




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年高中数学下学期第15周 平面与平面平行的判定教学设计【本节教材分析】(一)三维目标1、知识与技能(1)学生通过对线面平行的性质定理的学习,进一步掌握面面平行的性质定理;(2)初步学会应用线面平行与面面平行的判定和性质解决简单的问题.2、过程与方法学生通过对探索成果的归纳、整理和分析,从而认清线面平行与面面平行的性质定理的地位和作用,建立空间平行关系之间的联系.3、情感、态度与价值观进一步培养学生的空间想象能力,以及逻辑思维能力.(二)教学重点直线与平面平行的性质定理和平面与平面平行的性质定理(三)教学难点平行关系的判定定理与性质定理的简单应用.(四)教学建议前面已学习了平行关系的判定定理,这节课我们将通过例题让学生体会应用线面平行关系的性质定理.平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位,也是高考考查的重点.将三个平行关系的相互转化贯穿始终是难点,即“线线平行线面平行面面平行”【新课导入设计】导入一:(事例导入)观察长方体(图1),可以发现长方体ABCDABCD中,线段AB所在的直线与长方体ABCDABCD的侧面CDDC所在平面平行,你能在侧面CDDC所在平面内作一条直线与AB平行吗?下面我们讨论直线与平面平行的性质问题.图1导入二:(直接导入)提问:(1)下面两组平面哪一组看上去象平行平面?(2)如果一个平面与两个平行平面相交,会有什么结果出现? 【课堂结构】提出问题回忆空间两平面的位置关系.欲证线面平行可转化为线线平行,欲判定面面平行可如何转化?找出恰当空间模型加以说明.用三种语言描述平面与平面平行的判定定理.应用面面平行的判定定理应注意什么?利用空间模型探究:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么位置关系?回忆线面平行的性质定理,结合模型探究面面平行的性质定理.用三种语言描述平面与平面平行的性质定理.应用面面平行的性质定理的难点在哪里?应用面面平行的性质定理口诀是什么?活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.问题引导学生回忆两平面的位置关系.问题面面平行可转化为线面平行.问题借助模型锻炼学生的空间想象能力.问题引导学生进行语言转换.问题引导学生找出应用平面与平面平行的判定定理容易忽视哪个条件.问题引导学生画图探究,注意考虑问题的全面性.问题注意平行与异面的区别.问题引导学生进行语言转换.问题作辅助面.问题引导学生自己总结,把握面面平行的性质.讨论结果:如果两个平面没有公共点,则两平面平行若=,则.如果两个平面有一条公共直线,则两平面相交若=AB,则与相交.两平面平行与相交的图形表示如图1.图1由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了. 另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面. 由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?如图2,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.图2例如:AA平面AADD,AA平面DCCD;但是,平面AADD平面DCCD=DD.如图3,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.图3例如:AA平面AADD,EF平面AADD,AA平面DCCD,EF平面DCCD;但是,平面AADD平面DCCD=DD.如图4,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.图4例如:AC平面ABCD,BD平面ABCD,AC平面ABCD,BD平面ABCD;直线AC与直线BD相交.可以判定,平面ABCD平面ABCD.两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:若a,b,ab=A,且a,b,则.图形语言为:如图5,图5利用判定定理证明两个平面平行,必须具备:()有两条直线平行于另一个平面;()这两条直线必须相交.尤其是第二条学生容易忽视,应特别强调.如图6,借助长方体模型,我们看到,BD所在的平面AC与平面AC平行,所以BD与平面AC没有公共点.也就是说,BD与平面AC内的所有直线没有公共点.因此,直线BD与平面AC内的所有直线要么是异面直线,要么是平行直线.图6直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.因为,直线BD与平面AC内的所有直线要么是异面直线,要么是平行直线,只要过BD作平面BDDB与平面AC相交于直线BD,那么直线BD与直线BD平行. 如图7.图7【例题讲解】例1 已知正方体ABCDA1B1C1D1,如图9,求证:平面AB1D1平面BDC1.图9活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视学生的解答,发现问题及时纠正,并及时评价.证明:ABCDA1B1C1D1为正方体,D1C1A1B1,D1C1=A1B1.又ABA1B1,AB=A1B1,D1C1AB,D1C1=AB.四边形ABC1D1为平行四边形.AD1BC1.又AD1平面AB1D1,BC1平面AB1D1,BC1平面AB1D1.同理,BD平面AB1D1.又BDBC1=B,平面AB1D1平面BDC1.变式训练 如图10,在正方体ABCDEFGH中,M、N、P、Q、R分别是EH、EF、BC、CD、AD的中点,求证:平面MNA平面PQG.图10证明:M、N、P、Q、R分别是EH、EF、BC、CD、AD的中点,MNHF,PQBD.BDHF,MNPQ.PRGH,PR=GH;MHAR,MH=AR,四边形RPGH为平行四边形,四边形ARHM为平行四边形.AMRH,RHPG.AMPG.MNPQ,MN平面PQG,PQ平面PQG,MN平面PQG.同理可证,AM平面PQG.又直线AM与直线MN相交,平面MNA平面PQG.点评:证面面平行,通常转化为证线面平行,而证线面平行又转化为证线线平行,所以关键是证线线平行.例2 证明两个平面平行的性质定理.解:如图11,已知平面、满足,=a,=b,求证:ab.图11证明:平面平面,平面和平面没有公共点.又a,b,直线a、b没有公共点.又=a,=b,a,b.ab.变式训练 如果两个平面分别平行于第三个平面,那么这两个平面互相平行.解:已知,求证:.证明:如图12,作两个相交平面分别与、交于a、c、e和b、d、f,图12.点评:欲将面面平行转化为线线平行,先要作平面.例3 已知:a、b是异面直线,a平面,b平面,a,b.求证:.证明:如图13,在b上任取点P,显然Pa.于是a和点P确定平面,且与有公共点P.图13设=a,a,aa.a.这样内相交直线a和b都平行于,.变式练习 如图14,两条异面直线AB、CD与三个平行平面、分别相交于A、E、B及C、F、D,又AD、BC与平面的交点为H、G.图14求证:EHFG为平行四边形.证明:ACEG.同理,ACHF.EGHF.同理,EHFG.故EHFG是平行四边形.例4 如图所示,B为ACD所在平面外一点,点M、N、G分别为ABC、ABD、BCD的重心(1)求证:平面MNG平面ACD;(2)求SMNGSACD. 【分析】解答本题(1)可综合利用三角形重心和平行线分线段成比例定理证明(2)可证明MNGDCA,从而将两三角形的面积之比转化为求三角形对应边比的平方【解】(1)证明:连结BM、BN、BG并延长分别交AC、AD、CD于P、F、H三点,M、N、G分别是ABC、ABD、BCD的重心,2,连接PF、FH、PH,有MNPF.又PF平面ACD,MN平面ACD,MN平面ACD.同理MG平面ACD,又MGMNM,平面MNG平面ACD.(2)由(1)可知,MGPH.又PHAD,MGAD.同理NGAC,MNCD,MNGDCA,SMNGSACD(NG:AC)2(1:3)21:9.【规律方法】要证明面面平行,由面面平行的判定定理知需在某一平面内寻找两条相交且与另一平面平行的直线要证明线面平行,又需根据线面平行的判定定理,在平面内找与已知直线平行的直线,这种面面平行、线面平行、线线平行的相互转化,是处理平行问题的基本思想方法变式练习 如图所示,在正方体ABCDA1B1C1D1中,E是棱DD1的中点在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论证明:在棱C1D1上存在点F,使B1F平面A1BE.证明如下:如下图所示,分别取C1D1和CD的中点F,G,连接B1F,EG,BG,CD1,FG.因为A1D1B1C1BC,且A1D1BC,所以四边形A1BCD1是平行四边形,因此D1CA1B.又E,G分别为D1D,CD的中点,所以EGD1C,从而EGA1B.这说明A1,B,G,E四点共面,所以BG平面A1BE. 因为四边形C1CDD1与B1BCC1都是正方形,F,G分别为C1D1和CD的中点,所以FGC1CB1B,且FGC1CB1B,因此四边形B1BGF是平行四边形,所以B1FBG.而B1F平面A1BE,BG平面A1BE,故B1F平面A1BE.课堂小结知识总结:利用面面平行的判定定理和面面平行的性质证明线面平行.方法总结:见到面面平行,利用面面平行的性质定理转化为线线平行,本节是“转化思想”的典型素材.作业 课本习题2.2 A组7、8.当堂检测课后练习与提高1设直线l, m, 平面,下列条件能得出的有 ( )l,m,且l,m;l,m,且lm;l,m,且lmA 1个 B 2个 C 3个 D 0个2下列命题中为真命题的是( ) A 平行于同一条直线的两个平面平行 B 垂直于同一条直线的两个平面平行 C 若个平面内至少有三个不共线的点到另个平面的距离相等,则这两个平面平行 D若三条直线a、b、c两两平行,则过直线a的平面中,有且只有个平面与b,c都平行3下列命题中正确的是( )平行于同一直线的两个平面平行; 平行于同一平面的两个平面平行; 垂直于同一直线的两个平面平行; 与同一直线成等角的两个平面平行A B C D 4. 如图,直线,相交于,求证:平面 5“内存在着不共线的三点到平面的距离均相等”是“”的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要的条件 6平面平面,直线a,P,则过点P的直线中( ) A不存在与平行的直线 B不一定存在与平行的直线 C有且只有条直线与a平行 D有无数条与a平行的直线 7下列命题中为真命题的是( ) A平行于同一条直线的两个平面平行 B垂直于同一条直线的两个平面平行 C若个平面内至少有三个不共线的点到另个平面的距离相等,则这两个平面平行 D若三直线a、b、c两两平行,则在过直线a的平面中,有且只有个平面与b,c均平行 8、如图,平面平面,A、C,B、D,点E、F分别在线段A、CD上,且,求证:EF平面参考答案:1、D 2、B 3、B 4、略 5、B 6、C 7、B 8略第2.2.3节直线与平面平行的性质第2.2.4节平面与平面平行的性质【本节教材分析】(一)三维目标1、知识与技能(1)学生通过对线面平行的性质定理的学习,进一步掌握面面平行的性质定理;(2)初步学会应用线面平行与面面平行的判定和性质解决简单的问题.2、过程与方法学生通过对探索成果的归纳、整理和分析,从而认清线面平行与面面平行的性质定理的地位和作用,建立空间平行关系之间的联系.3、情感、态度与价值观进一步培养学生的空间想象能力,以及逻辑思维能力.(二)教学重点直线与平面平行的性质定理和平面与平面平行的性质定理(三)教学难点平行关系的判定定理与性质定理的简单应用.(四)教学建议前面已学习了平行关系的判定定理,这节课我们将通过例题让学生体会应用线面平行关系的性质定理.平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位,也是高考考查的重点.将三个平行关系的相互转化贯穿始终是难点,即“线线平行线面平行面面平行”【新课导入设计】导入一:(事例导入)观察长方体(图1),可以发现长方体ABCDABCD中,线段AB所在的直线与长方体ABCDABCD的侧面CDDC所在平面平行,你能在侧面CDDC所在平面内作一条直线与AB平行吗?下面我们讨论直线与平面平行的性质问题.图1导入二:(直接导入)提问:(1)下面两组平面哪一组看上去象平行平面?(2)如果一个平面与两个平行平面相交,会有什么结果出现? 第2.2.3节直线与平面平行的性质【教学过程】提出问题回忆空间两直线的位置关系.若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.用三种语言描述直线与平面平行的性质定理.试证明直线与平面平行的性质定理.应用线面平行的性质定理的关键是什么?总结应用线面平行性质定理的要诀.活动:问题引导学生回忆两直线的位置关系.问题借助模型锻炼学生的空间想象能力.问题引导学生进行语言转换.问题引导学生用排除法.问题引导学生找出应用的难点.问题鼓励学生总结,教师归纳.讨论结果:空间两条直线的位置关系:相交、平行、异面.若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面. 怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.直线与平面平行的性质定理用文字语言表示为: 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3已知a,a,=b.求证:ab.证明:应用线面平行的性质定理的关键是:过这条直线作一个平面.应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.例题讲解思路1例1 如图4所示的一块木料中,棱BC平行于面AC.图4(1)要经过面AC内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面AC内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面AC内,过点P作直线EF,使EFBC,图5并分别交棱AB、CD于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面AC,平面BC与平面AC交于BC,所以BCBC.由(1)知,EFBC,所以EFBC.因此BE、CF显然都与平面AC相交.变式训练 如图6,a,A是另一侧的点,B、C、Da,线段AB、AC、AD交于E、F、G点,若BD=4,CF=4,AF=5,求EG.图6解:Aa,A、a确定一个平面,设为.Ba,B.又A,AB.同理AC,AD.点A与直线a在的异侧,与相交.面ABD与面相交,交线为EG.BD,BD面BAD,面BAD=EG,BDEG.AEGABD.(相似三角形对应线段成比例)EG=.点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平面,且ab,a,a,b都在平面外.求证:b.证明:过a作平面,使它与平面相交,交线为c.a,a,=c,ac.ab,bc.c,b,b.变式训练 如图8,E、H分别是空间四边形ABCD的边AB、AD的中点,平面过EH分别交BC、CD于F、G.求证:EHFG.图8证明:连接EH.E、H分别是AB、AD的中点,EHBD.又BD面BCD,EH面BCD,EH面BCD.又EH、面BCD=FG,EHFG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.例3如图所示,过正方体ABCDA1B1C1D1的棱BB1作一平面交平面CDD1C1于EE1,求证:BB1EE1. 思路分析:由题目可获取以下主要信息:EE1是两平面的交线;BB1平面BB1E1E,且要证明BB1EE1,解答本题可利用线面平行的性质定理证明:BB1CC1,BB1平面CDD1C1,CC1平面CDD1C1,BB1平面CDD1C1,又BB1平面BEE1B1,且平面BEE1B1平面CDD1C1EE1,BB1EE1.温馨提示:利用线面平行的性质定理解题的步骤:确定(或寻找)一条直线平行一个平面;确定(或寻找)过这条直线的且与这个平行平面相交的平面;确定交线;由定理得出结论变式练习 如下图,三棱锥ABCD被一平面所截,截面为平行四边形EFGH.求证:CD平面EFGH.证明:四边形EFGH为平行四边形,EFGH,又GH平面BCD,EF平面BCD.而平面ACD平面BCDCD,EF平面ACD,EFCD.又EF平面EFGH,CD平面EFGH,CD平面EFGH. 例4已知:四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:APGH.思路分析:通过三角形中位线的线线平行关系转化为线面平行,然后再由线面平行转化为所要证明的线线平行证明:如图所示,连结AC交BD于O,连结MO.四边形ABCD是平行四边形,O是AC中点,又M是PC的中点,APOM. PA平面BMD.平面PAHG平面BMDGH,PAGH.课堂小结 知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行. 方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.作业 课本习题2.2 A组5、6.当堂检测1若直线a不平行于平面,则下列结论成立的是( )A内的所有直线都与直线a异面B内不存在与a平行的直线C内的直线都与a相交D直线a与平面有公共点2直线a平面,P,过点P平行于的直线( )A只有一条,不在平面内B有无数条,不一定在内C只有一条,且在平面内D有无数条,一定在内3下列判断正确的是( )Aa,b ,则abBaP,b ,则a与b不平行Ca ,则aDa,b,则ab4、过平面外一点作一平面的平行线有 条5、若直线a,b都平行于平面,那么a与b的位置关系是 abc6、三个平面两两相交有三条交线,如果其中两条交线平行,则第三条交线也和它们分别平行参考答案:1、D 2、C 3、B 4、无数条 5、平行 相交 异面 6、略第2.2.4节平面与平面平行的性质(一)创设情景、引入课题引导学生观察、思考教材第57页的观察题,导入本节课所学主题。(二)研探新知上节课我们研究了两个平面的位置关系,具有什么条件的两个平面是平行的呢?1、问题:(1)平面内有一条直线与平面平行,、平行吗?(2)平面内有两条直线与平面平行,、平行吗?通过长方体模型,引导学生观察、思考、交流,得出结论。(3)平面内有无数条直线与平面平行,则,对吗? (4)、如下图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业废气催化燃烧技术环保产业发展报告
- 自媒体技术使用合同范本
- 游戏行业临时工合同协议
- 江苏招聘教师就业协议书
- 用吊车维修楼房合同范本
- 门市房出租协议合同范本
- 舞蹈机构合作人合同协议
- 门窗代加工项目合同范本
- 祖屋继承公证协议书范本
- 港龙文化体育合作协议书
- 【排放清单】省市县行业温室气体排放清单报告模板
- 出租屋孩子意外免责协议书
- 培养指导青年教师协议书
- 国家职业技术技能标准 6-28-02-01 燃气储运工 人社厅发202188号
- 12-重点几何模型-手拉手模型-专题训练
- 2024-2025学年九年级化学人教版上册检测试卷(1-4单元)
- Excel常用函数公式及技巧
- 辅警考试题《公安基础知识》综合能力测试题(附答案)
- 线上线下教学衔接北师大版数学三年级下册口算脱式计算、应用题复习、期中、期末检测试卷(含部分答案解析)
- 《城市轨道交通》课件
- 合伙人散伙分家协议书范文
评论
0/150
提交评论