




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.3 导数的几何意义课时作业 A组基础巩固1已知曲线yx22上一点P,则在点P的切线的倾斜角为()A30 B45 C135 D165解析:f(1) 1,k1.又ktan 1,45.答案:B2若曲线yf(x)在点(x0,f(x0)处的切线方程为3xy50,则()Af(x0)0 Bf(x0)0Cf(x)0 Df(x0)不存在解析:由y3x5知f(x0)30.答案:B3设f(x)为可导函数且满足 1,则过曲线yf(x)上点(1,f(1)处的切线斜率为()A2 B1 C1 D2解析: f(1)1.答案:B4曲线yf(x)x3在点P处切线的斜率为k,当k3时点P的坐标为()A(2,8) B(1,1)或(1,1)C(2,8) D.解析:设点P的坐标为(x0,y0),则kf(x0) (x)23x3x0x3x.k3,3x3,x01或x01,y01或y01.点P的坐标为(1,1)或(1,1)答案:B5曲线yx311在点P(1,12)处的切线与y轴交点的纵坐标是()A9 B3C9 D15解析:由导数的定义得33x(x)2,则曲线在点P(1,12)处的切线斜率k 33x(x)23,故切线方程为y123(x1),令x0,得y9.答案:C6已知函数yf(x)在点(2,1)处的切线与直线3xy20平行,则y等于_解析:因为直线3xy20的斜率为3,所以由导数的几何意义可知y3.答案:37.如图是函数f(x)及f(x)在点P处切线的图象,则f(2)f(2)_.解析:由题图可知切线方程为yx,所以f(2),f(2),所以f(2)f(2).答案:8已知函数yax2b在点(1,3)处的切线斜率为2,则_.解析:由导数的几何定义知y|x1 (2aax)2a2.a1,把切点(1,3)代入函数yax2b得3ab,b3a2,故2.答案:29在抛物线yx2上求一点P,使在该点处的切线垂直于直线2x6y50.解析:设点P的坐标为(x0,y0),则抛物线yx2在点P处的切线斜率为f(x0) 2x0.直线2x6y50的斜率为,由题设知2x01,解得x0,此时y0,所以点P的坐标为.10已知曲线y上两点P(2,1),Q.(1)求曲线在点P、Q处的切线的斜率;(2)求曲线在P、Q处的切线方程解析:将P(2,1)代入y,得t1,y.y .(1)曲线在点P处切线的斜率为y1;曲线在点Q处切线的斜率为y.(2)曲线在点P处的切线方程为y1x2,即xy30.曲线在点Q处的切线方程为y(x1),即x4y30.B组能力提升1若函数yf(x)的导函数在区间a,b上是增函数,则函数yf(x)在区间a,b上的图象可能是()解析:依题意,yf(x)在 a,b上是增函数,则在函数f(x)的图象上,各点的切线的斜率随着x的增大而增大,观察四个选项的图象,只有A满足答案:A2若曲线yx2axb在点(0,b)处的切线方程是xy10,则()Aa1,b1 Ba1,b1Ca1,b1 Da1,b1解析:y 2xa,因为曲线yx2axb在点(0,b)处的切线方程是xy10,所以切线的斜率k1y|x0,且点(0,b)在切线上,于是有解得答案:A3已知直线xy10与抛物线yax2相切,则a_.解析:由导数的定义可求得y 2ax,所以k2ax1,所以x,y1.代入yax2可解得a.答案:4设P为曲线C:yx22x3上的点,且曲线C在点P处的切线倾斜角的取值范围为,则点P横坐标的取值范围为_解析:设点P坐标为(x,y),y (2x2x)2x2,由题意知切线斜率k 1,),由导数的几何定义可得2x21,x.答案:,)5设定义在(0,)上的函数f(x)axb(a0)若曲线yf(x)在点(1,f(1)处的切线方程为yx,求a,b的值解析:因为,所以 ,解得a2或a(不符合题意,舍去)将a2代入f(1)ab,解得b1.所以a2,b1.6求曲线yx2上分别满足下列条件的切线与曲线的切点(1)平行于直线y4x5;(2)垂直于直线2x6y50;(3)倾斜角为135.解析:y (2xx)2x.设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级英语单词测试题集
- 员工职业健康与安全防护培训课件
- DNA分子结构讲解与教学设计
- 小学信息技术考试题目解析
- 园林景观工程施工技术标准大全
- 建筑工程招投标实务操作流程
- 建筑节能改造技术应用报告
- 小学高年级数学思维训练题库全集
- 商业银行信用卡反欺诈策略
- 医院运营管理绩效考核方案
- DBJT15-147-2018 建筑智能工程施工、检测与验收规范
- 华为鸿蒙课件
- 全站仪使用课件
- 中国心房颤动管理指南(2025)解读
- 2025年成人高考专升本民法真题及答案
- 2024年云南省公务员考试行测真题参考答案详解
- 初中普法主题教育
- 多发骨折病人疑难病例讨论
- 草果种植技术课件大全
- 2025年水利A证考试题及答案
- 新疆就业政策课件
评论
0/150
提交评论