




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
思想方法训练3数形结合思想一、能力突破训练1.已知i为虚数单位,如果图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数z1+i对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限2.方程sinx-4=14x的实数解的个数是()A.2B.3C.4D.以上均不对3.若xx|log2x=2-x,则()A.x2x1B.x21xC.1x2xD.x1x24.若函数f(x)=(a-x)|x-3a|(a0)在区间(-,b上取得最小值3-4a时所对应的x的值恰有两个,则实数b的值等于()A.22B.2-2或6-32C.632D.2+2或6+325.已知函数f(x)=与g(x)=x3+t,若f(x)与g(x)图象的交点在直线y=x的两侧,则实数t的取值范围是()A.(-6,0B.(-6,6)C.(4,+)D.(-4,4)6.(2018浙江,9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为3,向量b满足b2-4eb+3=0,则|a-b|的最小值是()A.3-1B.3+1C.2D.2-37.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为.8.函数f(x)=2sin xsinx+2-x2的零点个数为.9.若不等式9-x2k(x+2)-2的解集为区间a,b,且b-a=2,则k=.10.已知函数f(x)为偶函数且f(x)=f(x-4),又f(x)=-x2-32x+5,0x1,2x+2-x,12,函数g(x)=b-f(2-x),其中bR,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是()A.74,+B.-,74C.0,74D.74,213.设函数f(x)=ex(2x-1)-ax+a,其中a1,若存在唯一的整数x0使得f(x0)1,则方程f(x)=2x在区间0,2 018上的根的个数是.15.已知函数f(x)=|lgx|,010.若a,b,c互不相等,且f(a)=f(b)=f(c),求abc的取值范围.16.设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,bR),已知它们在x=1处的切线互相平行.(1)求b的值;(2)若函数F(x)=f(x),x0,g(x),x0,且方程F(x)=a2有且仅有四个解,求实数a的取值范围.思想方法训练3数形结合思想一、能力突破训练1.D解析 由题图知,z=2+i,z1+i=2+i1+i=2+i1+i1-i1-i=32-12i,则对应的点位于复平面内的第四象限.故选D.2.B解析 在同一坐标系内作出y=sinx-4与y=x的图象,如图,可知它们有3个不同的交点.3.A解析 设y1=log2x,y2=2-x,在同一坐标系中作出其图象,如图,由图知,交点的横坐标x1,则有x2x1.4.D解析 结合函数f(x)的图象(图略)可知,3-4a=-a2,即a=1或a=3.当a=1时,-b2+4b-3=-1(b3),解得b=2+2;当a=3时,-b2+12b-27=-9(b9),解得b=6+32,故选D.5.B解析 如图,由题知,若f(x)=4x与g(x)=x3+t图象的交点位于y=x两侧,则有23+t2,(-2)3+t-2,解得-6t6.6.A解析 e为单位向量,b2-4eb+3=0,b2-4eb+4e2=1.(b-2e)2=1.以e的方向为x轴正方向,建立平面直角坐标系,如图.OE=2e,OB=b,OA=a,=3.由(b-2e)2=1,可知点B在以点E为圆心,1为半径的圆上.由|a-b|=|OA-OB|=|BA|,可知|a-b|的最小值即为|BA|的最小值,即为圆上的点B到直线OA的距离.又直线OA为y=3x,点E为(2,0),点E到直线OA的距离d=232=3.|BA|的最小值为3-1,即|a-b|的最小值为3-1.7.-解析 在同一坐标系画出y=2a和y=|x-a|-1的图象如图.由图可知,要使两函数的图象只有一个交点,则2a=-1,a=-.8.2解析 f(x)=2sin xsinx+2-x2=2sin xcos x-x2=sin 2x-x2.如图,在同一平面直角坐标系中作出y=sin 2x与y=x2的图象,当x0时,两图象有2个交点,当xf(1),g(3)2,得f(x)=2+x,x2,f(2-x)=2+2-x,2-x2=x2,x2,所以f(x)+f(2-x)=x2+x+2,x2.因为函数y=f(x)-g(x)=f(x)+f(2-x)-b恰有4个零点,所以函数y=b与y=f(x)+f(2-x)的图象有4个不同的交点.画出函数y=f(x)+f(2-x)的图象,如图.由图可知,当b74,2时,函数y=b与y=f(x)+f(2-x)的图象有4个不同的交点.故选D.13.D解析 设g(x)=ex(2x-1),h(x)=a(x-1),则不等式f(x)0即为g(x)h(x).因为g(x)=ex(2x-1)+2ex=ex(2x+1),当x-12时,g(x)-12时,g(x)0,函数g(x)单调递增.所以g(x)的最小值为g-12.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=ex(2x-1)与h(x)=a(x-1)的大致图象.显然,当a0时,满足不等式g(x)h(x)的整数有无数多个.函数g(x)=ex(2x-1)的图象与y轴的交点为A(0,-1),与x轴的交点为D12,0.取点C-1,-3e.由图可知,不等式g(x)h(x)只有一个整数解时,须满足kPCakPA.而kPC=0-3e1-(-1)=32e,kPA=0-(-1)1-0=1,所以32ea1.故选D.14.2 019解析 画出y=f(x)与y=2x的图象如图所示,由图象可得,方程f(x)=2x在0,2 018内的根分别是x=0,1,2,3,2 018,共2 019个.15.解 因为-lg a=lg bab=1,所以abc=c,也就是说只需要求出c的取值范围即可,如下图所示,绘制出图象,平移一条平行于x轴的直线,可以发现c的取值范围是10c12,因此10abc12.故abc的取值范围是(10,12).16.解 函数g(x)=bx2-ln x的定义域为(0,+).(1)f(x)=3ax2-3af(1)=0,g(x)=2bx-1xg(1)=2b-1,依题意2b-1=0,得b=12.(2)当x(0,1)时,g(x)=x-1x0.所以当x=1时,g(x)取得极小值g (1)=12.当a=0时,方程F(x)=a2不可能有且仅有四个解.当a0,x(-,-1)时,f(x)0,所以当x=-1时,f(x)取得极小值f(-1)=2a,又f(0)=0,所以F(x)的图象如图所示.从图象可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论