




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新能源材料的研究进展及其应用摘 要: 新能源材料是指支撑新能源发展的、具有能量储存和转换功能的功能材料或结构功能一体化材料。新能源是降低碳排放、优化能源结构、实现可持续发展的重要途径, 新能源材料是引导和支撑新能源发展的重要基础,对新能源的发展发挥了重要作用,一些新能源材料的发明催生了新能源系统的诞生。在新能源系统中得到了大量应用。主要介绍目前在新能源发展过程中发挥重要作用的锂离子电池关键材料、相变储热材料及储氢材料等新能源材料的现状应用及存在问题。关键词:新能源; 储热;储氢Progress in Research of Green Energy MaterialsAbstract: New energy materialsrefers to thefunctional materialorstructure function integration material supportingthe development of new energy,withenergy storage and conversionfunction. Utilizing green energy is one of the ways to decrease carbon em ission, optimize energy structure and realize sustainable development. New energy materials are important for guiding and supporting the development of new energy and are extensively used in the new energy systems. Current status and existing problems of some new energy materials that play important roles in the developing process of new energy, such as related materials for batteries, and hydrogen energy and fuel cells, phase change thermal storage materials and hydrogen storage materials are briefly introduced.Key words: new energy; thermal storage;hydrogen storage引言新能源和再生清洁能源技术是21世纪世界经济发展中最具有决定性影响的5个技术领域之一。新能源包括太阳能、生物质能、核能、风能、地热、海洋能等一次能源以及二次能源中的氢能等。新能源材料是指支撑新能源发展的、具有能量储存和转换功能的功能材料或结构功能一体化材料。1新能源材料对新能源的发展发挥了重要作用,一些新能源材料的发明催生了新能源系统的诞生,一些新能源材料的应用提高了新能源系统的效率,新能源材料的使用直接影响着新能源系统的投资与运行成本。本文主要介绍锂离子电池关键材料、相变储热材料及储氢材料等新能源材料的现状及存在问题。1. 锂离子电池关键材料新能源汽车用锂离子动力电池和新能源大规模储能用锂离子电池也已日渐成熟,市场前景广阔。近10年来锂离子电池技术发展迅速,其比能量由100Wh/kg增加到180Wh/kg,比功率达到2 000W /kg,循环寿命达到1 000次以上。2在此基础上,如何进一步提高锂离子电池的性价比及其安全性是目前的研究重点,其中开发具有优良综合性能的正负极材料、工作温度更高的新型隔膜和加阻燃剂的电解液是提高锂离子电池安全性和降低成本的重要途径。1.1 锂离子电池正极材料应用及相关问题锂离子电池的正极材料比容量目前仅130 mAh/g左右,远低于负极材料350 mAh/g的比容量,成为锂离子电池容量的限制因素,因此改善正极材料性能是提高锂离子电池性能的关键因素之一。LiCoO2一直是锂离子电池的主导正极材料。它是一种具有层状结构的化合物,为A-NaFeO2六方形结构, R3m空间群,其理论比容量为274 mAh/g,实际比容量为140155 mAh/g,平均电压317 V3。LiCoO2可以快速充放电,在2175413 V范围内,锂离子在LixCoO2中可可逆脱嵌,材料具有较好的结构稳定性和循环性能4。但LiCoO2热稳定性较差,同时当充电电压由413 V提高到414 V时,LiCoO2的晶格参数c由1144 nm急剧下降至1140 nm,导致其电化学性能和安全性能下降5。尖晶石结构LMi n2O4正极材料具有比LiCoO2更好的安全性,而且价格低廉,特别适用于动力电池。LMi n2O4属于立方晶系,为Fd3m空间群,其理论比容量为148 mAh/g,实际比容量一般在115125 mAh/g之间,在3134135 V之间充放电时可逆性好6。但尖晶石LMi n2O4在3 V附近过渡嵌锂时,易发生Janh-Teller效应,由尖晶石结构向四方结构转变,电化学性能急剧下降。未改性的尖晶石LMi n2O4循环衰减较快, 50e以上容量衰减更快。目前通过向尖晶石LMi n2O4中引入适当的金属离子和氧,氟,碘,硫,硒等阴离子进行掺杂,或进行颗粒表面包覆改性,有效提高了其在高温下的循环稳定性。目前存在的主要问题是材料的比表面积较大,震实密度偏小,加工性能较差,这些问题在一定程度上制约了该材料在锂离子电池中的应用。1.2 锂离子电池负极材料应用及相关问题目前锂离子电池用负极材料以碳质材料为主,包括中间性炭微球和改性天然石墨等,实际比容量达到350 mAh/g左右7。锡氧化物是最早开始研究的锡基嵌锂材料,具有较高的首次容量(1 200 mAh/g),但在首次充放电过程中易生成氧化锂,产生较大的首次不可逆容量,此外在充放电循环过程中材料的体积变化大,易造成材料的结构破坏,导致材料循环性能下降8。为抑制材料的结构破坏,开发了由SnO, B2O3, P2O5复合而成的非晶态复合材料,在此材料中, SnO弥散分布于惰性组分B2O3,P2O5中,这些不参与嵌脱锂的惰性组分抑制了材料的体积变化,改善了材料的循环性能,但材料的不可逆容量仍较大9。为降低材料的不可逆容量,同时保持材料结构的稳定,材料研究者先后研发出多种由活性组分(Sn)和惰性组分(Sb, Cu, N,i Fe, Co等)形成的金属间化合物、合金及非晶材料,其中SnCo非晶材料为成功的一例,其首次放电容量为586 mAh/g,库仑效率为87%,在前15次循环过程中,循环保持率为95%。Li4Ti5O12是一种具有尖晶石结构的可嵌锂电极材料,在脱/嵌锂离子过程中,该材料在Li4Ti5O12与Li7Ti5O12之间进行两相转变,二者的晶格常数几乎相同,体积变化小于1%,因而被称之为/零应变材料,与目前商业化较多的碳负极材料相比, Li4Ti5O12具有放电平稳,电压指示明显,首次充放电过程中不形成SEI膜,不易产生枝晶,与电解液相容性好以及锂离子扩散系数大等特点10。但Li4Ti5O12仍存在着导电性较差,容量不高以及平台电压较高等问题。2.相变储热材料相变材料(PCM)主要包括无机PCM、有机PCM和复合PCM三类。无机PCM包括结晶水合盐,熔融盐,金属合金和其他无机物;有机类PCM包括石蜡,酸酯和其他有机物;复合PCM主要是有机和无机共融PCM的混合物。结晶水合盐提供了从几至100多熔点的近70种可供选择的PCM。该类PCM通常是中低温PCM的最重要的一类,优点是价格便宜,体积储热密度大,溶解热大,导热系数比有机PCM大,一般呈中性,缺点是过冷度大和易析出分离。解决过冷度大的方法是加微粒结构与盐类结晶物相类似的成核剂和搅拌,解决析出的方法是添加增稠剂,晶体结构改变剂和搅拌。石蜡由直烷烃混合组成。常用石蜡PCM的熔点为一12759,熔解热为150kJkg到250kJkg。优点是熔解热大,一般不过冷、不析出、性能稳定,无腐蚀性且在有机PCM中价格最低,缺点是导热系数小和密度小。酸酯类也是常用的有机PCM,其性能特点与石蜡相似。4目前所用相变储热材料主要有固一液(s_L)相变储热材料,固一固(s_S)相变储热材料。固一固相变储热材料主要是通过晶体有序一无序结构转变进行可逆地吸、放热。它主要有有机和无机两大类。由于它具有不生成液态,体积变化小,无腐蚀,热效率高和寿命长等优点而受到重视,主要包括交联高密度乙烯,层状钙钛矿和多元醇,通过晶格变化放热吸热。多元醇之间混合可形成“合金”,得到相变温度较宽的混合s_S PCM。但是,多元醇在S_s相变温度以上的转变为塑性晶体,易软化和挥发损失,使用时要用压力容器密封心J。而无机固一固相变储热材料相变温度较高,且性能稳定,如层状钙钛矿类材料。如能将金属固一固相变温度降低到20左右,并使相变热达到lOOkJkg,将会使其在空调节能中得到广泛的应用。固一液相变储热材料主要是通过固一液相变进行可逆的吸、放热。它主要有熔盐结晶水合盐,石蜡,共晶Al_si合金。其Al_Si合金为高温相变储热材料,相变温度可达到500。C以上,可用于高温储热。水合盐和石蜡可用于常温储热,但是水合盐易产生过冷和析晶。为改善此类材料的不定形性,其发展方向是通过包覆复合的方式来获得复合相变储热材料有机一无机共融混合物是种类和应用范围最广的一类PCM,其相变温度为一14006700C,可供选择的PCM达4300种。3. 储氢材料固态或化合物储氢(如:金属氢化物储氢)较液态氢更为致密,相当于180MPa下的高压储氢,且安全有效11。因此,固态储氢材料是目前研究的热点。3.1 金属镁基储氢材料在研究储氢材料过程中,氢在非过渡金属上的初始黏附作用引起了研究者的兴趣。金属Mg由于储氢量高(716 w%t )、质量轻、价格低以及可逆储氢性质,成为储氢材料研究的热点12。Sprunger和Plummer在超高真空条件下研究了原子氢和Mg(0001)单晶的相互作用13。由于氢分子在超高真空条件下的黏附率低,无法利用热脱附的方法进行氢气吸附量的准确定量分析,Krozer和Kasemo利用Pt覆盖层作为解离催化剂研究Mg薄膜的氢吸收,通过薄膜的质量变化测量氢的含量14。Johansson等人在超高真空条件下生长了400A厚的镁薄膜,研究了储氢条件下氢与金属镁的黏附作用,提出了描述H/Mg原子比小于2%情况下纯镁薄膜氢化-脱氢动力学模型。研究结果显示,镁薄膜经金属Pt催化后,氢解离的活化能垒显著降低。3.2 金属氧化物储氢材料作为一种简单、安全、低成本、环境友好的技术,Fe3O4与Fe的可逆氧化还原是储氢和放氢的反应模板。氢以金属铁的形式储存起来,然后与H2O反应释放,具体过程如方程式(1)、(2)所示:Fe3O4+4H2y3Fe+4H2O (1) 3Fe+4H2OyFe3O4+4H2(2)通常的四氧化三铁粉末由于较低的表面积,在低于400e时不能有效地与H2或H2O发生氧化还原反应。Wang等人研究了钢铁公司的含铁烟气灰尘(记为FeOx),实验证明改进的FeOx通过氧化还原反应可以化学储氢并能直接为PEFC提供纯氢15。FeOx的改进是通过浸渍法将Cr, A,l Zr, Mo,Mo-A,l Mo-T,i Mo-Zr, Mo-Ce, Mo-Rh, Mo-Ni、Mo-Cu等离子作为添加剂加入,在提高H2的产生速率和氧化还原循环稳定性方面,Mo是最有效的元素,它以2FeO.MoO2合成物的形式存在。Pena等人的研究也表明第二种金属加入形成的双金属氧化物(如:NiFe2O4, CuFe2O4),具有更大的反应速率16。Xu等人报道了Na2O可逆地吸附氢形成NaH和NaOH(如方程式3所示),具有可逆储氢的潜能。17热重分析结果显示储氢量为310 w%t ;热脱附结果表明,将NaOH加到NaH中可以降低后者。目前用于储氢研究的无机材料有10种以上,除了以上介绍的,还有氨基硼烷、氮化硼纳米管、碳化硅纳米管以及金属合金等。18在研究过程中,纳米技术、掺杂催化技术以及氧化还原理论的应用,使材料的储氢研究得到了长足发展,缩短了与应用要求的距离。结语:开发新能源是降低碳排放、优化能源结构、实现人类社会可持续发展的重要途径。在新能源的发展过程中,新能源材料起到了不可替代的重要作用,引导和支撑了新能源的发展。核能材料是发展核能的重要基础。储能材料是发展节能的清洁交通和新型储能器件的重要支撑。新能源材料是推动氢能燃料电池快速发展的重要保障。提高能效,降低成本,节约资源,环境友好,将成为新能源发展的永恒主题,新能源材料将在其中发挥越来越重要的作用。如何针对新能源发展的重大需求,解决相关新能源材料的材料科学基础研究和重要工程技术问题,将成为材料工作者的重要研究课题。个人认为,对于储氢材料,多组分材料的储氢研究是较好的研究方向,因为很难找到一种物质既有较大的储氢量,在低温下又有较好的动力学性质,同时还兼具能够反复吸氢-脱氢的循环稳定性。因此进一步开发多组分复合材料,同时研究该材料的热力学性质及其与氢气的分子反应动力学,对拓展储氢的理论研究和实际应用具有重要意义。参考文献1李爱菊,陈红雨. 环境友好材料的研究进展J. 材料研究与应用,2010,04:372-378. 2蒋利军,张向军,刘晓鹏,朱磊,尉海军. 新能源材料的研究进展J. 中国材料进展,2009,Z1:50-56+663 Liu Xiaopeng, Jiang Lijun. Improve Plateau Property of Ti32Cr46V22BCC Alloy with HeatTreatment and Ce Additive J.Journal ofAlloys and Compounds,2009, 471: L36-L38. 4秦培,煜周世权. 能源材料的研究现状及发展前景. 2002年节能第5期5StephenGrot,WaltherGrot latinum Recycling Technology Development,FY2008AnnualProgress Report ofDOE Hydro-gen ProgramOL, 2008, www. hydrogen. energy. gov/an- nual_ progress08. htm.l6 Ai Zhouping. PGMs in Industrial Applications and RecyclingC.Proceedings of the Third International Conference on Pre-ciousMetals, Beijing: Metallurgic Press, 2008: 6.7 Huang Y H, Park K S, Goodenough J B, Improving LithiumBatteries by Tethering Carbon-Coated LiFePO4to Polypyrrole8付浪. 新能源材料的研究进展探究J. 科技风,2012,12:10.9.JElectrochem Soc,2006, 153(12): A2 282-A2 28610 ChenY, Wang G X, Konstantinov K, et al. Synthesis andCharacterization ofLiCoxMnyNi1-x-yO2as aCathodeMaterial for Secondary Lithium Batteries J.JPowerSources, 2003, 119-121: 184-188.11陈加福,陈志民,许群. 绿色能源氢气及无机材料储氢的研究进展J. 世界科技研究与发展,2007,05:32-38+56.12刘芸. 绿色能源氢能及其电解水制氢技术进展J. 电源技术,2012,10:1579-158113 W interMartin, Besenhard Jurgen O. ElectrochemicalLithi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通银行2025乌海市秋招群面案例总结模板
- 中国银行2025黄山市秋招无领导模拟题角色攻略
- 2025湿地保护行业技术与市场分析
- 农业银行2025咸阳市金融科技岗笔试题及答案
- 农业银行2025湘潭市秋招笔试EPI能力测试题专练及答案
- 销售岗位有期限劳动合同4篇
- 交通银行2025湘西土家族苗族自治州秋招笔试性格测试题专练及答案
- 农业银行2025玉林市秋招群面案例总结模板
- 交通银行2025咸宁市数据分析师笔试题及答案
- 建设银行2025益阳市小语种岗笔试题及答案
- 养心氏片治疗冠心病临床应用专家共识(2024年版)解读
- 中铁合同交底培训
- 中医康复理疗师考试实操试题及答案
- 学生心理健康一生一策档案表
- 工程施工队伍管理制度
- 2025 ada糖尿病诊疗标准要点解读
- 餐饮服务与数字化运营 习题及答案 项目二
- 浙江首考2025年1月普通高等学校招生全国统考政治试题及答案
- 小学体育知识
- 2025-2030全球卫星星座行业调研及趋势分析报告
- 成人失禁相关性皮炎的预防与护理课件
评论
0/150
提交评论