二次函数周长面积最值问题.doc_第1页
二次函数周长面积最值问题.doc_第2页
二次函数周长面积最值问题.doc_第3页
二次函数周长面积最值问题.doc_第4页
二次函数周长面积最值问题.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012个性化辅导教案老师姓名学生姓名学管师 学科名称年级上课时间 月 日 _ _ :00- _ :00课题名称周长,面积最大问题教学重点教学过程【精讲精练】1. (2009永州考点:二次函数综合题专题:压轴题点评:此题考查了学生的综合应用能力,要注意数形结合,认真分析,仔细识图注意待定系数法求函数的解析式,注意函数交点坐标的求法,注意三角形面积的求法)如图,在平面直角坐标系中,点的坐标分别为点在轴上已知某二次函数的图象经过、三点,且它的对称轴为直线点为直线下方的二次函数图象上的一个动点(点与、不重合),过点作轴的平行线交于点(1)求该二次函数的解析式;(2)若设点的横坐标为用含的代数式表示线段的长(3)求面积的最大值,并求此时点的坐标xyBFOACPx=1(第27题)2. (2009贵港考点:二次函数综合题专题:压轴题;开放型点评:本题主要考查了二次函数解析式的确定、图形的面积求法、函数图象交点等知识及综合应用知识、解决问题的能力要注意(3)题要根据y和M点纵坐标的大小关系来分情况进行求解不要漏解)如图,抛物线yax2bxc与x轴交于点A和点B(2,0),与y轴的负半轴交于点C,且线段OC的长度是线段OA的2倍,抛物线的对称轴是直线x1(1)求抛物线的解析式;(2)若过点(0,5)且平行于x轴的直线与该抛物线交于M、N两点,以线段MN为一边抛物线上与M、N不重合的任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,请你求出S关于点P的纵坐标y的函数解析式;(3)当0x时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由AOBCyxx13. (2009本溪)如图所示,在平面直角坐标系中,抛物线y=ax2bxc经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),PBE的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把PEF沿直线EF折叠,点P的对应点为P/,请直接写出P/点坐标,并判断点P/是否在该抛物线上12331DyCBAP2ExO4. 如图,在平面直角坐标系xoy中,A、B两点的坐标分别为A(3,0)、B(0,4),抛物线经过B点。(1) 求c的值;(2) 若ABO以每秒1个单位的速度沿x轴向右运动,运动t秒后,刚好落在DCE的位置上,且点C在抛物线上。 求t的值,并判断说明此时四边形ABCD是否是菱形; 若N点是线段CD上的一个动点,过点N作MNy轴交抛物线于点M,求MN的最大值。5. (2011烟台难度较大考点:二次函数综合题。点评:此题考查了点与函数的关系,三角形面积的求解方法以及利用二次函数的知识求函数的最大值的问题此题综合性很强,难度较大,解题时要注意分类讨论思想,方程思想与数形结合思想的应用)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上直线CB的表达式为y=x+,点A、D的坐标分别为(4,0),(0,4)动点P自A点出发,在AB上匀速运行动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位当其中一个动点到达终点时,它们同时停止运动设点P运动t(秒)时,OPQ的面积为s(不能构成OPQ的动点除外)(1)求出点B、C的坐标;(2)求s随t变化的函数关系式;(3)当t为何值时s有最大值?并求出最大值6. (2011湘西州考点:二次函数综合题。专题:综合题。点评:本题是二次函数的综合题型,其中涉及的到大知识点有抛物线的顶点公式和三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果)如图抛物线y=x22x+3与x轴相交于点A和点B,与y轴交于点C(1)求点A、点B和点C的坐标(2)求直线AC的解析式(3)设点M是第二象限内抛物线上的一点,且SMAB=6,求点M的坐标(4)若点P在线段BA上以每秒1个单位长度的速度从 B 向A运动(不与B,A重合),同时,点Q在射线AC上以每秒2个单位长度的速度从A向C运动设运动的时间为t秒,请求出APQ的面积S与t的函数关系式,并求出当t为何值时,APQ的面积最大,最大面积是多少?7. (2011芜湖有一定难度考点:二次函数综合题。专题:压轴题;函数思想。点评:本题着重考查了待定系数法求二次函数解析式、相似三角形的判定和性质等知识点,二次函数的最值问题,综合性强,有一定的难度)平面直角坐标系中,ABOC如图放置,点A、C的坐标分别为(0,3)、(1,0),将此平行四边形绕点O顺时针旋转90,得到ABOC(1)若抛物线过点C,A,A,求此抛物线的解析式;(2)ABOC和ABOC重叠部分OCD的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时AMA的面积最大?最大面积是多少?并求出此时M的坐标8. (2011漳州考点:二次函数综合题。点评:此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出ACEBAE是解决问题的关键)如图1,抛物线y=mx211mx+24m (m0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且BAC=90(1)填空:OB=,OC=;(2)连接OA,将OAC沿x轴翻折后得ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值9. (2011南充有一定难度考点:二次函数综合题;解二元一次方程组;二次函数的最值;待定系数法求二次函数解析式;平行四边形的性质。专题:计算题;代数几何综合题。点评:本题主要考查对用待定系数法求二次函数的解析式,二次函数的最值,平行四边形的性质,解二元一次方程组等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度)抛物线y=ax2+bx+c与x轴的交点为A(m4,0)和B(m,0),与直线y=x+p相交于点A和点C(2m4,m6)(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当PQM的面积最大时,请求出PQM的最大面积及点M的坐标10. (2011乐山考点:二次函数综合题。专题:综合题。点评:本题考查的是二次函数的综合题,(1)利用顶点式求出二次函数的解析式,(2)确定四边形的周长,(3)根据对称性求出CD的解析式,然后求出x的取值范围和S与x的函数关系)已知顶点为A(1,5)的抛物线y=ax2+bx+c经过点B(5,1)(1)求抛物线的解析式;(2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD的周长;(3)在(2)中,当四边形ABCD的周长最小时,作直线CD设点P(x,y)(x0)是直线y=x上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PQR当PQR与直线CD有公共点时,求x的取值范围;在的条件下,记PQR与COD的公共部分的面积为S求S关于x的函数关系式,并求S的最大值11. (2011丹东考点:二次函数综合题。专题:综合题。点评:本题考查了二次函数的综合运用关键是根据已知条件求抛物线解析式,根据抛物线的对称性,相似三角形的知识解题)己知:二次函数y=ax2+bx+6(a0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x24x12=0的两个根(1)请直接写出点A、点B的坐标(2)请求出该二次函数表达式及对称轴和顶点坐标(3)如图1,在二次函数对称轴上是否存在点P,使APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合)过点Q作QDAC交BC于点D,设Q点坐标(m,0),当CDQ面积S最大时,求m的值12. (2011北海考点:二次函数综合题;解二元一次方程组;二次函数的最值;待定系数法求二次函数解析式;相似三角形的判定与性质。专题:计算题。点评:本题主要考查对解二元一次方程组,用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识点的连接和掌握,能综合运用这些性质进行计算是解此题的关键)如图,抛物线y=ax2+bx+4与x轴交于A(2,0)、B(4、0)两点,与y轴交于C点(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且ATC是以AC为底的等腰三角形,求点T的坐标;(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,过点M的直线lx轴交AC或BC于点P求点M的运动时间t与APQ面积S的函数关系式,并求出S的最大值13. (2010乐山考点:二次函数综合题。专题:压轴题。点评:此题是二次函数的综合题,主要考查了二次函数解析式的确定、相似三角形的性质、解直角三角形、函数图象交点以及图形面积的求法等重要知识点;能够将图形面积最大(小)问题转换为二次函数的最值问题是解答(3)题的关键)如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tanOAC=2(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使APC=90,若存在,求出点P的坐标;若不存在,请说明理由;(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线ll,交抛物线于点N,连接CN、BN,设点M的横坐标为t当t为何值时,BCN的面积最大?最大面积为多少? 14. (2010无锡考点:二次函数综合题;二次函数的最值;三角形的面积。专题:代数几何综合题。点评:本题着重考查了待定系数法求二次函数解析式、函数图象交点坐标及图形面积的求法等重要知识点,综合性强,能力要求较高考查学生数形结合的数学思想方法)如图,矩形ABCD的顶点A、B的坐标分别为(4,0)和(2,0),BC=设直线AC与直线x=4交于点E(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求CMN面积的最大值15. (2011娄底考点:二次函数综合题。点评:本题考查了二次函数的综合应用,将函数知识与方程、几何知识有机地结合在一起这类试题一般难度较大解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件)如图,已知二次函数y=x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)x1x2=10(1)求此二次函数的解析式(2)写出B,C两点的坐标及抛物线顶点M的坐标;(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由16. (2011遂宁考点:二次函数综合题。点评:此题考查了二次函数对称轴的求解方法,二次函数的对称性,待定系数法求函数的解析式,三角形面积的求解方法以及相似三角形的判定与性质等知识此题综合性很强,难度较大,解题的关键是注意数形结合与方程思想的应用)如图:抛物线y=ax24ax+m与x 轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C(1)求抛物线的对称轴和点B的坐标;(2)过点C作CP对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且BPD=BCP,求抛物线的解析式;(3)在(2)的条件下,设抛物线的顶点为G,连接BG、CG、求BCG的面积17. (2010安顺难度较大考点:二次函数综合题。专题:压轴题。点评:本题考查的是二次函数图象与应用相结合的综合题,以及三角形面积的计算方法,难度较大)如图,抛物线y=x2+3与x轴交于点A,点B,与直线y=x+b相交于点B,点C,直线y=x+b与y轴交于点E(1)写出直线BC的解析式(2)求ABC的面积(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动设运动时间为t秒,请写出MNB的面积S与t的函数关系式,并求出点M运动多少时间时,MNB的面积最大,最大面积是多少?18. (2011眉山考点:二次函数综合题。专题:综合题。点评:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论