




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时正弦函数、余弦函数的性质(二)课后篇巩固探究1.函数y=|sin x|的一个单调递增区间是()A.-4,4B.4,34C.,32D.32,2解析画出y=|sin x|的图象即可求解.故选C.答案C2.已知函数y=2cos x的定义域为3,43,值域为a,b,则b-a的值是()A.2B.3C.3+2D.23解析根据函数y=2cos x的定义域为3,43,故它的值域为-2,1,可得b-a=1-(-2)=3.答案B3.已知函数y=3sin2x+6的图象是轴对称图形,则它的一条对称轴可以是()A.y轴B.直线x=-12C.直线x=6D.直线x=3解析A:当x=0时,2x+6=6,不合题意;B:当x=-12时,2x+6=0,不合题意;C:当x=6时,2x+6=2,正确;D:当x=3时,2x+6=56,不合题意,故选C.答案C4.函数y=2sin3-2x的单调递增区间是()A.k-12,k+512(kZ)B.k+512,k+1112(kZ)C.k-3,k+6(kZ)D.k+6,k+23(kZ)解析y=2sin3-2x=-2sin2x-3,函数y=sin2x-3的单调递减区间为y=2sin3-2x的单调递增区间,即2k+22x-32k+32(kZ)k+512xk+1112(kZ).答案B5.同时具有性质:最小正周期是;图象关于直线x=3对称;在-6,3上是增函数.这样的一个函数可以为()A.y=sinx2+6B.y=cos2x+3C.y=sin2x-6D.y=cosx2-6解析周期是的只有B,C,y=cos2x+3=cos2x-6+2=-sin2x-6,当x-6,3时,2x-6-2,2,因此C是增函数,B是减函数,故选C.答案C6.若04,a=2sin+4,b=2sin+4,则()A.abC.ab2解析04,4+4+42.而正弦函数y=sin x在x0,2上是增函数,sin+4sin+4.2sin+42sin+4,即ab.答案A7.导学号68254037函数y=sin2x+2cos x3x43的最大值和最小值分别是()A.74,-14B.74,-2C.2,-14D.2,-2解析因为函数y=sin2x+2cos x3x43=1-cos2x+2cos x=-(cos x-1)2+2,又cos x-1,12.所以当cos x=-1,即x=时,函数y取得最小值为-4+2=-2;当cos x=12,即x=3时,函数y取得最大值为-14+2=74.答案B8.函数y=sin |x|+sin x的值域是.解析y=sin |x|+sin x=2sinx,x0,0,x0时,a+b=3,-a+b=1,得a=1,b=2.当a0)在区间0,1上出现了50次最小值,则的取值范围是.解析设函数的周期为T,由题意知(49+12)T1,(50+12)T1,又T=2,则991,1011,解得991,即a2时,cos x=1时,函数取得最大值,ymax=13a8-32;当a20,即a0时,cos x=0时,函数取得最大值,ymax=5a8-12.综上所述,g(a)=5a8-12,a2.13.导学号68254039已知函数f(x)=1-2a-2acos x-2sin2x的最小值为g(a),aR.(1)求g(a);(2)若g(a)=12,求a及此时f(x)的最大值.解(1)y=f(x)=1-2a-2acos x-2(1-cos2x),令t=cos x,则y=2t2-2at-2a-1,t-1,1,当a2-1,即a1,即a2时,ymin=f(1)=-4a+1.故g(a)=1,a2.(2)由g(a)=12,得a=-1,此时f(x)=2cos2x+2cos x+1,当cos x=1时,f(x)max=5,此时x=2k,kZ.14.导学号68254040已知函数f(x)=sin(x+)其中0,|2,若函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为2,且直线x=6是函数y=f(x)图象的一条对称轴.(1)求的值;(2)求y=f(x)的单调递增区间;(3)若x-6,3,求y=f(x)的值域.解(1)因为函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为2,所以函数的周期T=,所以=2=2.(2)因为直线x=6是函数y=f(x)图象的一条对称轴,所以26+=k+2,kZ,=k+6,kZ.又|2,所以=6.所以函数的解析式是y=sin2x+6.令2x+6-2+2k,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏张家港检验认证有限公司招聘1人考前自测高频考点模拟试题及一套答案详解
- 浙江国企招聘截止9月23日可笔试历年参考题库附带答案详解
- 浙江国企招聘2025年台州市椒江区市场开发服务中心(台州市椒江区心海市场管理有限公司)公开招聘工作人员笔试及笔试历年参考题库附带答案详解
- 2025黄山黟县桃花源人才服务有限公司招聘劳务派遣工作人员1人笔试历年参考题库附带答案详解
- 2025陕西九州通医药有限公司招聘10人笔试历年参考题库附带答案详解
- 2025重庆秀山县县属国有企业招聘(918922)笔试历年参考题库附带答案详解
- 2025重庆市地质矿产勘查开发集团有限公司招聘62人笔试历年参考题库附带答案详解
- 2025鄂尔多斯市交通投资有限公司苏乌段一级公路收费所招聘笔试历年参考题库附带答案详解
- 2025贵州省余庆水投劳务服务有限责任公司招聘劳务派遣人员笔试历年参考题库附带答案详解
- 2025福建泉州丰泽教育管理集团有限公司从事丰泽机关幼儿园丰盛园教学工作国企派遣员工专项招聘16人笔试历年参考题库附带答案详解
- GB/T 18266.2-2025体育场所等级的划分第2部分:健身房
- 第4节 跨学科实践:电路创新设计展示-教科版九年级《物理》上册教学课件
- DGTJ08-2310-2019 外墙外保温系统修复技术标准
- 光电美容培训课件
- 子痫及子痫前期病例分析
- 2025至2030年中国智慧场馆行业市场运营态势及投资前景研判报告
- 2025年热塑性硫化橡胶市场前景分析
- 竣工结算审计服务投标方案(技术方案)
- 公路施工质量培训课件
- 2024北森图形推理题
- 基础护理8章试题及答案
评论
0/150
提交评论