2019-2020学年高二数学10月月考试题(奥赛创新班).doc_第1页
2019-2020学年高二数学10月月考试题(奥赛创新班).doc_第2页
2019-2020学年高二数学10月月考试题(奥赛创新班).doc_第3页
2019-2020学年高二数学10月月考试题(奥赛创新班).doc_第4页
2019-2020学年高二数学10月月考试题(奥赛创新班).doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019-2020学年高二数学10月月考试题(奥赛创新班)一、选择题1在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同现从中随机取出2个小球,则取出的小球标注的数字之和为3的概率是( )A B C D 2的展开式中常数项是( )A-120 B120 C-160 D160 3某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因绿灯而通行的概率分别为,则汽车在这三处因遇红灯而停车一次的概率为( )A、 B、 C、 D、4. 齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( )A. B. C. D. 5乒乓球按其颜色分为白、黄两色,按质量优劣分为、三等,现袋中有6个不同的球,从中任取2个,事件 “取到的2个球个数之和为奇数”,事件 “取到的2个球同色”,则( ) A B C D6袋中有大小相同的个红球和个白球,随机从袋中取个球,取后不放回,那么恰好在第次取完红球的概率是A.B. C. D.7将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有( )A24种 B28种 C32种 D16种8. 在次实验中,同时抛掷枚均匀的硬币次,设枚硬币正好出现 枚正面向上, 枚反面向上的次数为,则的方差是 ( )A. B. C. D. 9如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有()(A)9个 (B)3个 (C)12个 (D)6个10设随机变量,且则的值为A B. C. D.11有一批产品,其中12件正品,4件次品,有放回地任取4件,若表示取到次品的件数,则A. B. C. D. 12. 若xA则A,就称A是伙伴关系集合,集合M=1,0,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为: A15 B16 C28 D25二、填空题13.在五个数字中,若随机取出三个数字,则剩下两个数字至少有一个是偶数的概率为_(结果用数值表示)14. 某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X表示选出的志愿者中女生的人数,则数学期望E(X)_(结果用最简分数表示)15若,则_16的展开式中的系数等于的系数的4倍,则n等于 三、解答题17用一颗骰子连掷三次,投掷出的数字顺次排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的数?18.同时抛掷两枚大小形状都相同、质地均匀的骰子,求:(1)点数之和为4的概率;(2)至少有一个点数为5的概率19.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为 ,经过第二次烧制后,甲、乙、丙三件产品的合格率均为 ()求第一次烧制后恰有一件产品合格的概率; ()求经过前后两次烧制后三件产品均合格的概率20袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.(1)求摸球3次就停止的事件发生的概率;(2)记摸到红球的次数为,求随机变量的分布列及其期望.21符合下列三个条件之一,某名牌大学就可录取:获国家高中数学联赛一等奖(保送录取,联赛一等奖从省高中数学竞赛优胜者中考试选拔);自主招生考试通过并且高考分数达到一本分数线(只有省高中数学竞赛优胜者才具备自主招生考试资格);高考分数达到该大学录取分数线(该大学录取分数线高于一本分数线)某高中一名高二数学尖子生准备报考该大学,他计划:若获国家高中数学联赛一等奖,则保送录取;若未被保送录取,则再按条件、条件的顺序依次参加考试已知这名同学获省高中数学竞赛优胜奖的概率是0.9,通过联赛一等奖选拔考试的概率是0.5,通过自主招生考试的概率是0.8,高考分数达到一本分数线的概率是0.6,高考分数达到该大学录取分数线的概率是0.3(I)求这名同学参加考试次数的分布列及数学期望;(II)求这名同学被该大学录取的概率22为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表平均每天喝以上为“常喝”,体重超过为“肥胖”常喝不常喝合计肥胖2不肥胖18合计30已知在全部人中随机抽取1人,抽到肥胖的学生的概率为(1)请将上面的列联表补充完整;(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率参考数据:015001000050002500100005000120722706384150246635787910828 其中为样本容量奥赛创新参考答案一、选择题ACDAD BDACD BA二、填空题(13)7 (14)4/7 (15)33 (16)7三、解答题17解:(1)A64120(个)(2)每掷一次,出现的数字均有6种可能性 ,故有666216(个)18. (1)(2)19.解:()分别记甲、乙、丙经第一次烧制后合格为事件;设E表示第一次烧制后恰好有一件合格,则: 7分第一次烧制后恰好有一件产品合格的概率为()分别记甲、乙、丙经两次烧制后合格为事件为A、B、C,则: 10分 设F表示经过两次烧制后三件产品均合格,则: 经过前后两次烧制后三件产品均合格的概率 13分20(1);(2)随机变量的分布列是0123P的数学期望为:【解析】试题分析:因为白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,所以每次摸到红球的概率都是,摸到白球的概率是,摸球3次就停止,说明前三次都摸到红球,相当于三次独立重复试验,摸到红球连续发生三次;(2)根据题意,随机变量的取值为0,1,2,3,利用独立重复试验的概率公式求出分布列及数学期望.试题解析:(1)摸球3次就停止,说明前三次分别都摸到了红球,则 (2)随机变量的取值为0,1,2,3.则,.随机变量的分布列是0123P的数学期望为:. (12分)21.(I)记“获省高中数学竞赛优胜奖”为事件A;记“获国家高中数学联赛一等奖”为事件B;记“通过自主招生考试”为事件C;记 “高考分数达到一本分数线”为事件D;记“高考分数达到该大学录取分数线”为事件E.随机变量的可能取值有2、4。则;随机变量的分布列为:240.550.45(II)记“这名同学被该大学录取”为事件则这名同学被该大学录取的概率为0.69522. (1),;(2)有;(3).【解析】试题分析:独立性检验通常利用随机变量来判断“两个分类变量有关系”,其中为样本容量,(1)先设部30人中的肥胖学生共名,则,常喝碳酸饮料且肥胖的学生有6名则可知,(2)则代入关系式,可有,有的把握认为肥胖与常喝碳酸饮料有关.(3)依次将随机抽出名的情形依次列出共有种,其中一名男生,一名女生的情形共有种,正好抽到一名男生和一名女生的概率为试题解析:(1)设全部30人中的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论