




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
问题06 如何利用导数处理参数范围问题一、考情分析导数是研究函数图象和性质的重要工具,有关导数问题是每年高考的必考试题之一,且相当一部分是高考数学试卷的压轴题.其中以函数为载体,以导数为工具,考查函数性质及应用的试题,已成为最近几年高考中函数与导数交汇试题的显著特点和命题趋向.随着高考对导数考查的不断深入,运用导数确定含参数函数中的参数取值范围成为一类常见的探索性问题,由于含参数的导数问题在解答时往往需要对参数进行讨论,因而它也是绝大多数考生答题的难点,具体表现在:他们不知何时开始讨论、怎样去讨论.对这一问题不仅高中数学教材没有介绍过,而且在众多的教辅资料中也很少有系统介绍,本文通过一些实例介绍这类问题相应的解法,期望对考生的备考有所帮助.二、经验分享(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点(3)函数在某个区间存在单调区间可转化为不等式有解问题(4)求函数f(x)极值的步骤确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(5)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值(6)求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值利用导数研究方程的根(函数的零点)的策略三、知识拓展(1)个别导数为0的点不影响所在区间的单调性,如f(x)x3,f(x)3x20(f(x)0在x0时取到),f(x)在R上是增函数(2)利用集合间的包含关系处理:yf(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集(3) f(x)为增函数的充要条件是对任意的x(a,b)都有f(x)0且在(a,b)内的任一非空子区间上f(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解(4)研究方程的根或曲线的交点个数问题,可构造函数,转化为研究函数的零点个数问题可利用导数研究函数的极值、最值、单调性、变化趋势等,从而画出函数的大致图象,然后根据图象判断函数的零点个数四、题型分析(一) 与函数单调性有关的类型用导数研究函数的单调性,这是导数最为基本的运用,相关结论是:若函数在区间上可导,则在区间上递增;递减.根据函数单调性求参数(函数中含参数或区间中含参数)的取值范围(一般可用不等式恒成立理论求解),一般步骤是:首先求出后,若能因式分解则先因式分解,讨论=0两根的大小判断函数的单调性,若不能因式分解可利用函数单调性的充要条件转化为恒成立问题.【例1】已知函数f(x)exlnxaex(aR),若f(x)在(0,)上是单调函数,求实数a的取值范围【分析】利用导数判断函数的单调性,先确定在此区间上是单调增还是单调减函数若 f(x)为单调递减函数,则f(x)0,若f(x)为单调递增函数,则f(x)0,然后分离参数a,转化为函数求最值.故g(x)在(0,1)上为单调递减函数,在1,)上为单调递增函数,此时g(x)的最小值为g(x)1,但g(x)无最大值(且无趋近值)故f(x)不可能是单调递减函数若f(x)为单调递增函数,则f(x)0,在x0时恒成立,即alnx0,在x0时恒成立,所以alnx,在x0时恒成立,由上述推理可知此时a1.故实数a的取值范围是(,1【点评】已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:yf(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集(2)转化为不等式的恒成立问题:即“若函数单调递增,则f(x)0;若函数单调递减,则f(x)0”来求解【小试牛刀】【2018届广东深圳上学期期中】若函数在区间内单调递增,则a的取值范围是A. B. C. D. 【答案】B(二) 与不等式有关的类型以导数作为工具,以含有参数的不等式作为载体在知识交汇处命题已成为如今各地联考和高考命题的热点之一,在利用不等式恒成立求参数取值范围时,常利用以下结论:若值域为,则不等式恒成立;不等式有解;若值域为,则不等式恒成立;若值域为则不等式恒成立.【例2】已知函数()判断函数的单调区间;()若对任意的,都有,求实数的最小值.【分析】()先求导可得,因为分母,可直接讨论分子的正负即可得导数的正负,根据导数大于0可得其单调增区间,导数小于0可得其单调减区间.()可将转化为,设函数,即转化为对任意的, 恒成立,即函数的最大值小于0.先求函数的导数,讨论其正负得函数的单调区间,根据单调性求其最值,根据函数的最大值小于0即可求得的范围.()等价于,设函数,对于函数,不妨令.所以, 当时,在时,所以在为增函数,所以,不符合题意;当,在时,所以在为增函数,所以,不符合题意;当时,在时,所以在为减函数,所以,即在上成立,符合题意;综上,实数的最小值为.【点评】本题主要考查导数的运算、利用导数研究函数的单调性、利用导数研究函数的极值与最值、恒成立问题等数学知识,考查综合分析问题解决问题的能力和计算能力,考查函数思想和分类讨论思想.利用“要使成立,只需使函数的最小值恒成立即可;要使成立,只需使函数的最大值恒成立即可”.在此类问题中分类讨论往往是一个难点,这需要经过平时不断的训练和结累方可达到的.【小试牛刀】【福建省莆田市第一中学2019届高三上学期第一次月考2】已知函数fx=lnx+xt2x,tR,若存在x12,2,使得fx+xfx0,则实数t的取值范围是( )A ,2 B ,32 C ,94 D ,3【答案】C(三) 与极值有关的类型极值这个概念在高中数学中可以说是一个与导数紧密相连的概念,基本上只要提到极值或极值点就会想到导数,极值点个数的判定,一般是转化为使方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助图形研究.在完成此类题目时一定要注意极值与最值的区别,它们有本质的不同:极值是一个局部的概念,而最值是一个整体的概念.【例3】【2017湖北荆州高三上学期第一次质量检测】已知函数,为自然对数的底数.(1)当时,试求的单调区间;(2)若函数在上有三个不同的极值点,求实数的取值范围.【分析】(1)借助题设条件运用导数求解;(2)依据题设进行转化,构造函数运用导数知识探求.【解析】(1)函数的定义域为,.当时,对于恒成立,所以,若,若 ,所以的单调增区间为 ,单调减区间为 .【点评】导数是研究函数的单调性和极值最值问题的重要而有效的工具.本题就是以函数解析式为背景,精心设置了两个问题,旨在考查导数知识与函数单调性和极值的关系等方面的综合运用以及分析问题解决问题的能力.本题的第一问是求函数的单调区间,求解时运用求导法则借助的范围及导数与函数的单调性的关系,分别求出求出其单调区间;第二问则通过构造函数,运用求导法则及转化化归思想,分析推证建立不等式,从而求出,使得问题获解.【小试牛刀】【2018届江西省南昌上学期第三次月考】若函数存在唯一的极值点,且此极值小于0,则实数的取值范围为( )A. B. C. D. 【答案】D(四) 与方程有关的类型在现在高中数学命题中常出现有关参数的方程问题、根的分布问题,有时甚至出现在一些高考试题的压轴题中.完成此类问题正确的转化是解题最为关键的地方,基础较差的学生可能出现复杂问题简单化的现象(当然是错误的理解而已),这种题型往往能很好的考查学生运用所学知识解决新问题的能力,这也正是它的魅力所在.【例4】【山东省安丘市2019届高三10月份质量检测】若存在正实数m,使得关于x的方程x+a2x+2m4exlnx+mlnx=0有两个不同的根,其中e为自然对数的底数,则实数a的取值范围是A ,0 B 12e,+C ,012e,+ D 0,12e【答案】B【分析】根据函数与方程的关系将方程进行转化,利用换元法转化为方程的有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.【解析】由题意得12a=(1+mx2e)ln(1+mx)=(t2e)lnt,(t=mx+11),令ft=(t2e)lnt,(t1),则ft=lnt+12et,ft=1t+2et20,当te时,ft=fe=0,当1te时,fte,而t1时,ft0,则要满足e12a12e,故选B. 【点评】本题考查了常见函数的导数、导数的运算法则、导数函数单调性关系、导数的综合应用和利用导数证明不等式,考查了学生的转化能力和运算求解能力.在某一区间内有关方程根的分布情况,所涉及方程往往有两类:一类为一元二次方程,它可充分利用三个二次的关系进行处理问题;另一类为非一元二次方程,此时一般要构造新的方程或函数进行研究,运用导数作为工具,数形结合处理此类问题.【小试牛刀】若存在正实数,使得关于的方程有两个不同的根,其中为自然对数的底数,则实数的取值范围是 ( )A B C. D【答案】D五、迁移运用1【2018届四川省成都市第七中学高三上学期半期考】已知,若关于的方程恰好有4个不相等的实数解,则实数的取值范围为A. B. C. D. 【答案】C【解析】,当时, , ,当时,即在内为增函数,当时, ,即在内为减函数,当时, ,即在内为减函数作出,函数的图象如图所示:2.【2018届广东省五校高三12月联考】已知函数,若有且只有两个整数, 使得,且,则的取值范围是( )A. B. C. D. 【答案】C【解析】3.【2018届陕西省西安中学高三上学期期中】已知函数,若对于任意的,都有成立,则实数的取值范围是( )A. B. C. D. 【答案】A【解析】利用排除法,当时, , ,函数在定义域上单调递增, ,满足题意,排除CD选项,当时, , ,函数在定义域上单调递减, ,满足题意,排除B选项,故选A.4.【2018届陕西省西安高三上学期期中】若函数在单调递增,则的取值范围是( )A. B. C. D. 【答案】D【解析】函数的导数为由题意可得恒成立,即为即有 设,即有由题意可得 ,且,解得的范围是,故选D. 5. 【2018届天津市耀华中学2018届高三上学期第二次月考】若函数在区间上有最小值,则实数的取值范围是( )A. B. C. D. 【答案】C6【东北师范大学附属中学2018届高三第五次模拟】已知函数f(x)=exxax,x(0,+),当x2x1时,不等式f(x1)x2f(x2)x10恒成立,则实数a的取值范围为A (,e B (,e) C (,e2) D (,e2【答案】D【解析】不等式f(x1)x2-f(x2)x10即x1fx1-x2fx2x1x2x10可得x1fx1-x2fx2x1fx1恒成立,构造函数gx=xfx=ex-ax2,由题意可知函数gx在定义域内单调递增,故gx=ex-2ax0恒成立,即aex2x恒成立,令hx=ex2xx0,则hx=exx12x2,当0x1时,hx1时,hx0,hx单调递增;则hx的最小值为h1=e121=e2,据此可得实数a的取值范围为(-,e2.本题选择D选项.7【贵州省铜仁市第一中学2019届高三上学期第二次月考】设函数f(x)=ex(2x-1)-2ax+2a,其中a1,若存在唯一的整数x0,使得f(x0)2,所以当agx有且只有一个整数解,故曲线y=gx上的点B0,1在直线下方,C1,3e在直线上方或在直线上,故12a3e4a 即a34e,12,故选B8.【2017江西抚州七校联考】已知函数的图像上存在不同的两点,使得曲线在这两点处的切线重合,则实数的取值范围是( )A B C D【答案】C 【解析】时,;时,.设且,当或时,故,当时,函数在点处的切线方程为,即当时,函数在点处的切线方程为,即,两切线重合的充要条件是,且,消去得:,令,则,构造函数,所以在单调递减,在单调递增,又所以,所以在单调递减,所以,即,故选C.9.【2017辽宁盘锦市高中2017届11月月考】设函数(),若不等式有解,则实数的最小值为( )ABC D【答案】A 10.【山西临汾一中等五校2017届高三第三联考,12】设函数,若不等式在上有解,则实数的最小值为( )A B C D【答案】C【解析】,令,故当时,当时,故在上是减函数,在上是增函数;故;则实数的最小值为故选C11.【四川自贡普高2017届一诊,12】设函数,其中,若有且只有一个整数使得,则的取值范围是( )A B C. D【答案】D【解析】设,则,单调递减;,单调递增,所以处取得最小值,所以,直线恒过定点且斜率为,所以,而,的取值范围12.已知,若,使得成立,则实数a的取值范围是_【答案】13.若关于的不等式在(0,+)上恒成立,则实数的取值范围是 【答案】【解析】函数在(0,+)大于零不恒成立,所以有,在(0,+)上恒成立不等式恒成立可得,;不等式即在(0,+)恒成立,用导数法可求函数的最小值,所以综合得,另当,时,解得因此实数的取值范围是14.【2017重庆八中二调】已知函数(1)讨论的单调性;(2)若,对于任意,都有恒成立,求的取值范围【答案】(1)若,则在上单调递增,在单调递减,若,则在上单调递增,若,则在上单调递增,在单调递减;(2).【解析】(1)、若,则在上单调递增,在单调递减;、若,则在上单调递增;、若,则在上单调递增,在单调递减; 15.【2017
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瓦楞纸板制作工基础考核试卷及答案
- 信息化学品合成分子自组装工艺考核试卷及答案
- 涂装优化工艺考核试卷及答案
- 锯材切割效率分析工艺考核试卷及答案
- 照明工设备维护与保养考核试卷及答案
- 影视影像技术面试题及答案
- 2025-2026学年赣美版(2024)小学美术三年级上册《别致版式集》教学设计
- 应急专干面试题库及答案
- 银行中层笔试题及答案
- 银行征信面试题目及答案
- 2025年人社局编外考试题库及答案
- 木制品厂安全生产培训课件
- 电工四级考试理论题库及答案
- 世纪英才教程课件
- 小学科学新教科版三年级上册全册教案(2025秋新版)
- 2025年综合基础知识题库(含答案)
- 七年级上册英语单词形象记忆法
- 小学生科普知识蜜蜂介绍PPT
- GB/T 24346-2009纺织品防霉性能的评价
- FZ/T 12045-2014喷气涡流纺粘胶纤维色纺纱
- 船舶电气知识培训课件
评论
0/150
提交评论