




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
思想方法训练1函数与方程思想一、能力突破训练1.已知椭圆x24+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一个交点为P,则|PF2|=()A.32B.3C.D.42.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2B.-1C.0D.13.已知函数f(x)=x2+ex-12(x0,a1)的定义域和值域都是-1,0,则a+b=.6.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得ACB为直角,则a的取值范围为.7.已知f(x)是定义域为R的偶函数,当x0时,f(x)=x2-4x,则不等式f(x+2)0),xR.若f(x)在区间(,2)内没有零点,则的取值范围是()A.0,18B.0,1458,1C.0,58D.0,1814,5812.已知数列an是等差数列,a1=1,a2+a3+a10=144.(1)求数列an的通项an;(2)设数列bn的通项bn=1anan+1,记Sn是数列bn的前n项和,若n3时,有Snm恒成立,求m的最大值.13.已知椭圆C:x2a2+y2b2=1(ab0)的一个顶点为A(2,0),离心率为22.直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当AMN的面积为103时,求k的值.14.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线l过点P(-2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围.思想方法训练1函数与方程思想一、能力突破训练1.C解析 如图,令|F1P|=r1,|F2P|=r2,则r1+r2=2a=4,r22-r12=(2c)2=12,化简得r1+r2=4,r2-r1=3,解得r2=72.2.D解析 因为函数f(x)是奇函数,所以f(-x)=-f(x).又因为f(x+2)是偶函数,则f(-x+2)=f(x+2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,f(8)=0,同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5);而f(5)=f(3+2)=f(-3+2)=f(-1)=-f(1)=-1,f(9)=1,所以f(8)+f(9)=1.故选D.3.B解析 由已知得,与函数f(x)的图象关于y轴对称的图象的函数解析式为h(x)=x2+e-x- (x0).令h(x)=g(x),得ln(x+a)=e-x-12,作函数M(x)=e-x-12的图象,显然当a0时,函数y=ln(x+a)的图象与M(x)的图象一定有交点.当a0时,若函数y=ln(x+a)的图象与M(x)的图象有交点,则ln a12,则0ae.综上,a1时,f(x)是增函数,a-1+b=-1,a0+b=0,无解.当0a0,a-10,解得a1.7.x|-7x3解析 令x0,当x0时,f(x)=x2-4x,f(-x)=(-x)2-4(-x)=x2+4x.又f(x)为偶函数,f(-x)=f(x),当x0时,f(x)=x2+4x,故有f(x)=x2-4x,x0,x2+4x,x0.再求f(x)5的解,由x0,x2-4x5,得0x5;由x0,x2+4x5,得-5x0,即f(x)5的解集为(-5,5).由于f(x)的图象向左平移两个单位即得f(x+2)的图象,故f(x+2)5的解集为x|-7x0,S是关于x的增函数,当x23,2时,S0,S是关于x的减函数,所以当x=23时,S取得最大值,此时|PQ|=2+x=83,|PN|=4-x2=329,Smax=83329=25627.故该矩形商业楼区规划成长为329,宽为83时,用地面积最大为25627.二、思维提升训练11.D解析 f(x)=1-cosx2+12sin x-12=12sin x-cos x=22sinx-4.由f(x)=0,得x-4=k,kZ,x=k+4,kZ.f(x)在区间(,2)内没有零点,T22-=,且k+4,(k+1)+42,由T2,得T2,00,018;当k=0时,1458;当k-2或k1,kZ时,不满足00,数列Sn是递增数列.当n3时,(Sn)min=S3=310,依题意,得m310,故m的最大值为310.13.解 (1)由题意得a=2,ca=22,a2=b2+c2,解得b=2.所以椭圆C的方程为x24+y22=1.(2)由y=k(x-1),x24+y22=1,得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=4k21+2k2,x1x2=2k2-41+2k2.所以|MN|=(x2-x1)2+(y2-y1)2=(1+k2)(x1+x2)2-4x1x2=2(1+k2)(4+6k2)1+2k2.因为点A(2,0)到直线y=k(x-1)的距离d=|k|1+k2,所以AMN的面积为S=12|MN|d=|k|4+6k21+2k2.由|k|4+6k21+2k2=103,解得k=1.所以k的值为1或-1.14.解 由y=kx+1,x2-y2=1(x-1)消去y,得(k2-1)x2+2kx+2=0.直线m与双曲线的左支有两个交点,方程有两个不相等的负实数根.=4k2+8(1-k2)0,x1+x2=2k1-k20,解得1k2.设M(x0,y0),则x0=x1+x22=k1-k2,y0=kx0+1=11-k2.由P(-2,0),Mk1-k2,11-k2,Q(0,b)三点共线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人力资源管理师考试重点知识梳理
- 2025年公办中小学编制教师招聘生物模拟试卷及答案解析
- 2025年核试验反应堆及其配套产品合作协议书
- 2025年陶瓷过滤器、过滤管合作协议书
- 2025年参数测试仪器项目合作计划书
- 2025年形状记忆合金项目合作计划书
- 2025年自动化生产线成套装备项目合作计划书
- 期末测试(含答案)2025-2026学年人教版四年级数学上册
- 2025年中低压电缆连接件项目建议书
- 贵州省黔西南布依族苗族自治州兴义市2024-2025学年五年级下学期期末数学试题
- 药学知识与技能课件
- 主持人个人礼仪规范
- 2025年人教版《太阳》标准课件
- 老年患者的安全管理课件
- 教学课件:《公差配合与技术测量》
- 《天体和天体系统》课件
- 《生物制品连续制造指南》
- 2025年高压电工作业考试国家总局题库及答案(共280题)
- 给药错误的应急流程
- 交流电能表现场校验仪检定规程
- 复旦大学金融科技研究院发布-中国金融科技专利技术白皮书(2024年)
评论
0/150
提交评论