




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年高一数学上学期期中联考试题(含解析) (III)一、选择题(本大题共12小题,共60.0分)1.已知集合A=1,3,6,B=2,3,4,5,则AB等于A. 3 B. 1,3,4,5,6C. 2,5 D. 1,6【答案】A【解析】【分析】根据集合的交集的概念得到结果即可.【详解】集合A=1,3,6,B=2,3,4,5,AB=3故选A【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性2.已知xR,f(x)=,则f(3)=()A. B. C. 9 D. 3【答案】C【解析】【分析】由30,得f(3)=32,由此能求出结果【详解】xR,f(x)=,f(3)=32=9故选:C【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题3.函数f(x)=的定义域为()A. B. C. D. 【答案】B【解析】【分析】由分式的分母不为0,,对数中真数大于0求解得答案【详解】由,得x0且x1函数f(x)=的定义域为(0,1)(1,+)故选:B【点睛】本题考查函数的定义域及其求法,考查对数不等式的解法,是基础题4.幂函数的图象过点, 则它的单调递增区间是( )A. B. C. D. 【答案】D【解析】试题分析:设幂函数,因为其图像过点,所以,可得,即幂函数,所以它的单调递增区间为.考点:幂函数的定义及单调性.5.某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为()A. 200本 B. 400本 C. 600本 D. 800本【答案】C【解析】【分析】该厂为了不亏本,日印图书至少为x本,则利润函数f(x)=10x-(5x+3000)0,由此能求出结果【详解】该厂为了不亏本,日印图书至少为x本, 则利润函数f(x)=10x-(5x+3000)0, 解得x600 该厂为了不亏本,日印图书至少为600本 故选:C【点睛】本题考查函数的实际应用问题,是基础题6.下列函数中与函数y=x相等的函数是()A. B. C. D. 【答案】B【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数【详解】对于A,=x(x0),与y=x(xR)的定义域不同,不是同一函数;对于B,y=log33x=x(xR),与y=x(xR)的定义域相同,对应关系也相同,是同一函数;对于C,=x(x0),与y=x(xR)的定义域不同,不是同一函数;对于D,=|x|(xR),与y=x(xR)的对应关系不同,不是同一函数故选:B【点睛】本题考查了判断两个函数是否为同一函数的应用问题,是基础题7.已知a=log0.70.6,b=ln0.6,c=0.70.6,则()A. B. C. D. 【答案】B【解析】【分析】利用对数函数与指数函数的单调性即可得出【详解】a=log0.70.6log0.70.7=1,b=ln0.60,c=0.70.6(0,1), acb 故选:B【点睛】本题考查了对数函数与指数函数的单调性,考查了推理能力与计算能力,属于基础题8.下列函数中,是奇函数,又在定义域内为增函数的是()A. B. C. D. 【答案】C【解析】【分析】根据指对幂函数的性质易得选项【详解】A.为非奇非偶函数,该选项错误;B.在定义域内没有单调性,该选项错误;Cy=2x3为奇函数,且在定义域R内为增函数,该选项正确;Dy=log2(-x)为非奇非偶函数,该选项错误故选:C【点睛】考查奇函数的定义,非奇非偶函数的定义,熟悉指数函数、对数函数的图象,清楚y=2x3的单调性,以及反比例函数的单调性9.定义在R的奇函数f(x),当x0时,f(x)=-x2+x,则x0时,f(x)等于()A. B. C. D. 【答案】A【解析】【分析】可设x0,得到-x0,利用奇偶性得出f(-x)=-x2-x=-f(x),从而得解【详解】f(x)是定义在R上的奇函数; f(-x)=-f(x); 设x0,-x0,则:f(-x)=-x2-x=-f(x); f(x)=x2+x 故选:A【点睛】考查奇函数的定义,奇函数在对称区间上的解析式的求法,属于基础题.10.设集合U=1,2,3,4,5,A=1,3,5,B=2,3,5,则图中阴影部分表示的集合的真子集有()个A. 3 B. 4 C. 7 D. 8【答案】C【解析】【分析】先求出AB=3,5,再求出图中阴影部分表示的集合为:CU(AB)=1,2,4,由此能求出图中阴影部分表示的集合的真子集的个数【详解】集合U=1,2,3,4,5,A=1,3,5,B=2,3,5,AB=3,5,图中阴影部分表示的集合为:CU(AB)=1,2,4,图中阴影部分表示的集合的真子集有:231=81=7故选C【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题11.已知偶函数f(x)在区间0,+)上单调递减,则满足f(2x-1)f(1)的x取值范围是()A. B. C. D. 【答案】D【解析】【分析】根据题意,由函数的奇偶性与单调性分析可得f(2x-1)f(1)f(|2x-1|)f(1)|2x-1|1,解可得x的取值范围,即可得答案【详解】根据题意,偶函数f(x)在区间0,+)上单调递减, 则f(2x-1)f(1)f(|2x-1|)f(1)|2x-1|1, 即-12x-11, 解可得:0x1, 即x的取值范围为(0,1), 故选:D【点睛】本题考查抽象函数的应用,涉及函数的奇偶性与单调性,属于基础题12.设xR,若函数f(x)为单调递增函数,且对任意实数x,都有f(f(x)-ex)=e+1(e是自然对数的底数),则f(ln1.5)的值等于()A. B. C. D. 【答案】D【解析】【分析】利用换元法 将函数转化为f(t)=e+1,根据函数的对应关系求出t的值,即可求出函数f(x)的表达式,即可得到结论【详解】设t=f(x)-ex, 则f(x)=ex+t,则条件等价为f(t)=e+1, 令x=t,则f(t)=et+t=e+1, 函数f(x)为单调递增函数, t=1, f(x)=ex+1, 即f(ln5)=eln1.5+1=1.5+1=2.5, 故选:D【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键二、填空题(本大题共4小题,共20.0分)13.lg20+lg5=_【答案】【解析】【分析】利用对数的运算性质即可得出【详解】原式故答案为:2【点睛】熟练掌握对数的运算性质是解题的关键,属于基础题14.已知f(x+1)=3x-1,则f(x)=_【答案】【解析】【分析】利用换元法:设x+1=t,则x=t-1,代入即可得解,【详解】设x+1=t,则x=t-1, f(t)=3(t-1)-1=3t-4, f(x)=3x-4, 故答案为:3x-4【点睛】本题考查了函数解析式的求解方法:换元法属基础题15.函数y=log0.5(9-x2)的单调递减区间为_【答案】【解析】【分析】,由复合函数的单调性分析,结合函数的定义域可得答案【详解】根据题意,设t=9-x2,则y=log0.5t, t=9-x20,解可得-3x3, 则在(-3,0)上,t=9-x2为增函数,在(0,3)上,t=9-x2为减函数; 而y=log0.5t为减函数, 若函数y=log0.5(9-x2)为减函数,则必有x(-3,0); 故答案为:(-3,0)【点睛】本题考查复合函数的单调性,关键是掌握复合函数的单调性的判断方法,属于基础题16.某班有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱乒乓球运动但不喜爱篮球运动的人数为_【答案】【解析】【分析】据题意即可得出喜爱乒乓球,也喜爱篮球的人数,从而可求出喜爱乒乓球运动但不喜爱篮球运动的人数【详解】喜爱乒乓球,也喜爱篮球的人数为:15+10+8-30=3(人); 喜爱乒乓球运动但不喜爱篮球运动的人数为:10-3=7(人) 故答案为:7【点睛】考查解决实际问题的能力,以及交集的概念及运算三、解答题(本大题共7小题,共70.0分)17.已知集合A=x|a-1x2a+1,B=x|0x4(1)当a=0时,求AB;(2)若AB,求实数a的取值范围【答案】(1);(2).【解析】【分析】(1)把a=0带入,可集合A,即可求解AB; (2)根据AB,利用集合之间关系即可求解实数a的取值范围【详解】解:集合A=x|a-1x2a+1,B=x|0x4(1)当a=0时,A=x|-1x1,那么AB=x|0x1;(2)由题意AB,可知当A=时,满足题意,可得a-12a+1解得:a-2;当A时,要使AB,则,解得:1,综上可知,当AB,实数a的取值范围是(-,-21,【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键18.已知幂函数f(x)=xa的图象过点(2,4)(1)求函数f(x)的解析式;(2)设函数h(x)=4f(x)-kx-8在5,8上是单调函数,求实数k的取值范围【答案】(1);(2).【解析】【分析】1)根据幂函数的图象过点(2,4),列方程求出a的值,写出f(x)的解析式; (2)写出函数h(x)的解析式,根据二次函数的对称轴与单调性求出k的取值范围【详解】解:(1)幂函数f(x)=xa的图象过点(2,4),f(2)=2=4, a=2, f(x)=x2; (2)函数h(x)=4f(x)-kx-8,h(x)=4x2-kx-8,对称轴为x=; 当h(x)在5,8上为增函数时,5,解得k40; 当h(x)在5,8上为减函数时,8,k64; 所以k的取值范围为(-,4064,+)【点睛】本题考查了幂函数的定义与应用问题,也考查了分类讨论思想,是中档题19.设函数 (1)用定义证明函数 在区间 上是单调递减函数;(2)求在区间上的最值【答案】(1)见解析(2)【解析】试题分析:(1)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论(2)利用(1)中的单调性求最值试题解析:解:(1)由定义得,所以函数 在区间 上是单调递减函数;(2)函数 在区间 上是单调递减函数,.点睛:明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.20.已知f(x)是定义在(0,+)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1(1)求f(8)的值;(2)求不等式f(x)-f(x-2)3的解集【答案】(1)3 (2)【解析】试题分析:()利用已知条件,直接通过f(8)=f(4)+f(2),f(4)=f(2)+f(2)求解f(8);()利用已知条件转化不等式f(x)+f(x-2)3为不等式组,即可求解不等式的解集试题解析:(1)由题意可得f(8)=f(42)=f(4)+f(2)=f(22)+f(2)=3f(2)=3 (2)原不等式可化为f(x)f(x-2)+3=f(x-2)+f(8)=f(8x-16) f(x)是定义在(0,+)上的增函数 解得:考点:抽象函数及其应用,函数的单调性的应用21.某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)满足R(x)=,假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有盈利,产品数量x应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品售价为多少?【答案】当工厂生产400台产品时,赢利最大,此时只须求时,每台产品售价为(万元/百台)=240(元/台)【解析】解:依题意,设利润函数为,则(1)要使工厂有赢利,则有当时,有得当时,有综上,要使工厂赢利,应满足,即产量应控制在大于100台小于820台的范围内。(2)故当时,有最大值3.6.而当所以当工厂生产400台产品时,赢利最大,此时只须求时,每台产品售价为(万元/百台)=240(元/台)22.计算下列各式(1)(-)(3)(-2)(2)2(-3)(-6)【答案】(1);(2).【解析】【分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山智能调度中心与决策支持系统创新创业项目商业计划书
- 卫星智能监测系统创新创业项目商业计划书
- 卫星通信设备制造创新创业项目商业计划书
- 现场急救救护知识培训课件
- 辐射基础知识培训课件
- 2025年家庭教育指导服务市场供需关系演变及策略建议报告001
- 2025年城市污水处理厂深度处理新型微生物菌剂研发报告
- 2025年环保产业技术创新与产业升级生态修复技术发展报告
- 现代灯培训知识课件
- 营养师考试备考 2025年营养师职业资格考试专项训练
- 六年级上册语文1-8单元习作范文
- 第10课 公共场所言行文明 第1课时(课件)2025-2026学年道德与法治三年级上册统编版
- 2025年污水操作考试题库及答案
- 2025年江西九江辅警考试题目及答案
- 2025至2030中国AI工业质检行业市场发展现状及布局案例与发展趋势分析与未来投资战略咨询研究报告
- 物业管理员职业技能大赛线上试题及答案
- 2025年工会专业知识考试题库及答案(真题版)
- 2025年国家法律职业资格考试《客观题卷一》模拟题及答案
- 2024森林防火道路建设基本要求
- 中班健康《我会用伞》
- 北京市东城区2024-2025学年高一下学期期末生物试题
评论
0/150
提交评论