




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面图形的面积,微积分基本定理:,即牛顿-莱布尼茨公式,它将求定积分问题转化为求原函数的问题。,牛顿莱布尼茨公式沟通了导数与积分之间的关系。,复习回顾,例1求图形中阴影部分的面积。,例2求抛物线与直线所围成平面图形的面积。,解析,解析,概括,例3求图形中阴影部分的面积。,解析,概括,求由曲线与直线y=x+3所围图形的面积。,动手做一做,小结,求由两条曲线所围成平面图形的面积:,(1)画出图形;,(2)求出交点的横坐标,定出积分的上、下限;,(3)确定被积函数,特别要注意分清被积函数的上、下位置;,(4)写出面积的定积分表达式,运用微积分公式计算定积分,求出面积。,思考题,思考题:试求下列曲线所围平面图形的面积。,结束,一般地,由曲线y=f(x),y=g(x)以及直线x=a,x=b所围成的平面图形的面积为S,则,例题3,求由两条曲线所围成平面图形的面积:,(1)画出图形;,(2)确定图形范围,通过解方程组求出交点的横坐标,定出积分的上、下限;,(3)确定被积函数,特别要注意分清被积函数的上、下位置;,(4)写出面积的定积分表达式,运用微积分公式计算定积分,求出面积。,练习,阴影部分由完全对称的两个部分组成,所以只需求出其中的一个部分的面积,就可以求出所要求的面积,而第一象限内的部分面积可由积分公式求出。,设第一象限内的阴影面积为,则所求面积为2,又因为,S=2=4,阴影部分的面积是4。,分析:,解:,返回,与的交点是(0,0)和(2,4),所围成的图形如左图。设阴影部分面积为S,,分析可知,所求面积为,,其中,,解析:,返回,解:,曲线与的交点为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年光伏农业大棚农业智能化控制系统报告
- 照相机行业市场分析与未来前景
- 2025年文化旅游融合发展示范区资金申请项目评估报告
- 2025-2026学年八年级英语上学期第一次月考 (辽宁专用)解析卷
- 2025 泌尿外科肾囊肿随访策略查房课件
- 2025年PCB制板项目提案报告
- 团结友爱的蚂蚁550字13篇
- 光照疗法考试题及答案
- 2025年黑龙江省哈尔滨市辅警人员招聘考试题库及答案
- 2025年河南省烟草专卖局招聘面试练习题及答案
- 2025年天津市专业人员继续教育试题及答案3
- 花坛景观设计59课件讲解
- 主要诊断及主要手术的选择原则
- 2024年急危重症患者鼻空肠营养管管理专家共识
- 医学教材 《中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版)》解读课件
- 公转私借款合同书模板
- 2024版债务处理咨询服务协议
- 《我们走在大路上》 课件 2024-2025学年湘教版初中美术七年级上册
- 2024年八年级物理上册必背考点113条背记手册
- 供应链安全风险评估
- 移动公司个人求职简历模板
评论
0/150
提交评论