2018届高三数学上学期期中试题文 (I).doc_第1页
2018届高三数学上学期期中试题文 (I).doc_第2页
2018届高三数学上学期期中试题文 (I).doc_第3页
2018届高三数学上学期期中试题文 (I).doc_第4页
2018届高三数学上学期期中试题文 (I).doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018届高三数学上学期期中试题文 (I)本卷共4页,满分150分.考生注意:1.答卷前,考生务必将自己的准考证号、姓名填在答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与本人准考证号、姓名是否一致。2.回答选择题时,选出每个小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,监考员将试卷和答题卡一并收回。一、选择题:本大题共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则( ) A B C D 2.已知直线和平面,且,则“”是“”的( )条件 A充分不必要 B必要不充分 C充要 D 既不充分也不必要3.已知为虚数单位,且,则在复平面上对应的点坐标为( ) A. B. C. D.4.已知向量、满足,且,则向量与的夹角是( ) A. B. C. D.5.若满足约束条件,则的最大值为( ) A B. C. D.6.已知,且,则( ) A B. C. D.7.已知向量,其中,且,则的最小值为( ) A B C D8.古代数学著作九章算术有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善织布,每天织的布都是前一天的倍,已知她天共织布尺,问这女子每天织布多少?”根据上述的已知条件,若要织布的总尺数不少于尺,则该女子所需织布的天数至少为( ) A B C D9函数的大致图像是( ) A B C D 10.已知某几何体的三视图如右图所示,其中正视图和左视图的上半部分均为边长为的等边三角形,则该几何体的体积为( )A BC D11.已知函数,对,有,且当满足时,的最小值为。现将图像向左平移个单位得到的图像,则的单调递减区间为( ) A. B. C. D. 12.已知函数,若存在正数满足,使在的值域为,则实数的取值范围为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,20分。13.已知为一个内角,且,则_根据以上事实,可猜想下式横线处应填的值为 . 15.函数分别为定义在区间()上的偶函数和奇函数,且满足则_16. 已知长方体同一顶点上的三条棱,、分别为、的中点,则四棱锥外接球的体积为_三、解答题:共70分。解答应写出文字说明、证明过程和演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题: 60分.17.已知等差数列的前项和为,且满足,.(1)求通项公式;(2)设,求数列的前项和.18. 如图所示,在四边形中,.(1)求的值(2)求线段的长度.19. 如图所示,在底面为平行四边形的四棱锥中,平面平面,、分别是、的中点.(1)求证:平面;(2)求三棱锥的体积.20.已知等比数列的首项,前项和满足,.(1)求实数的值及通项公式;(2)设,求数列的前项为,并证明:.21.设函数.(1)若曲线在点处的切线与曲线也相切,求实数的值;(2)设、分别是曲线和曲线上的点且横坐标均为,为坐标原点,记,若是函数的极值点,求实数的值,并判断在处取得极大值还是极小值,请说明理由.(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程(10分) 已知平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线相交于不同的两点、.(1)求直线的普通方程和曲线的直角坐标方程;(2)若,求实数的值.23.选修4-5:不等式选讲(10分) 已知函数.(1)解关于的不等式;(2)设实数,且函数的最小值为,求证:.文科数学试题卷答案一、选择题:本大题共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的。 二、填空题:本题共4小题,每小题5分,20分。13.; 14.; 15.; 16.三、解答题:共70分。解答应写出文字说明、证明过程和演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题: 60分.17.(1)设公差为,则有,解得故.5分(2), 9分所以12分18.(1)在中,故2分 所以 4分(2)在中,由正弦定理得, 解得,故8分又10分所以12分19.(1)法一:取中点,连接,因是的中点,故且,又,且,所以且,故四边形为平行四边形,所以. 3分 又平面,平面,所以平面.5分 (法二:取中点,证明平面平面)(2)因为平面,故点到平面的距离等于点到平面的距离,所以.7分 取中点,因,故,又平面平面,且平面平面,故平面.9分 易得,10分 故12分20.(1)当时,得. 2分又由及得3分因为等比数列,故有,解得此时,数列是首项为,公比为的等比数列,所以.5分(2)6分 得: 所以,又10分故令,则,故单调递减,又,所以恒成立,所以.12分21.(1),故,所以曲线在点处的切线的方程为.2分 又与曲线也相切,联立方程得,由,解得或.4分(2),故,5分 ,因在处取得极值,故6分此时,易知在单调递增,且故存在使得8分 于是当时,单调递减; 当 时,单调递增; 且,又,故存在使得,列出下表:单增极大值单减极小值单增 由上表知,在处取得极小值.12分(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(1)直线的普通方程为,2分 由得,故曲线的直角坐标方程为.4分(2)将直线的参数方程代入得,6分 设两根为,则 由,得,于是有10分23.(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论