




已阅读5页,还剩137页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2反比例函数的图像和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质教学重点和难点本节教学的重点是反比例函数的图象及图象的性质由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点教学方法: 启发 演示法教学辅助: 投影片教学过程1、情境创设 可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数反比例函数的图象研究:反比例函数的图象又会是什么样子呢?2、探索活动 探索活动1 反比例函数的图象 由于反比例函数的图象是曲线型的,且分成两支对此,学生第一次接触有一定的难度,因此需要分几个层次来探求: (1)可以先估计例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等); (2)方法与步骤利用描点作图; 列表:取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。 描点:依据什么(数据、方法)找点?连线:怎样连线? 可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。探索活动2 反比例函数的图象 可以引导学生采用多种方式进行自主探索活动: (1)可以用画反比例函数的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数与之间的关系,画出的图象 探索活动3 反比例函数与的图象有什么共同特征? 引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征反比例函数(k0)的图象是由两个分支组成的曲线。当时,图象在一、三象限:当时,图象在二、四象限。反比例函数(k0)的图象关于直角坐标系的原点成中心对称。3、例题教学 第11页课本安排例1,(1)巩固反比例函数的图象的性质。(2)是为了引导学生认识到:由于在反比例函数(k0)中,只要常数k的值确定,反比例函数就确定了因此要确定一个反比例函数,只需要一对对应值或图象上一个点的坐标即可(3)可以先设问:能否利用图象的性质来画图?4、应用知识,体验成功练习:课本“课内练习” 1.2.35、归纳小结,反思提高用描点法作图象的步骤反比例函数的图象的性质6、布置作业作业本(1) 课本“作业题”板书设计: 例1 解: 解: 练习 练习教学反思:本节课学生对性质都能很好的理解,亮点在于学生跟着操作,学生掌握很好。学生对画图细节掌握不是很好,有待于今后教学多给予渗透。1.2反比例函数的图像和性质(2)教学目标:1、巩固反比例函数图像和性质,通过对图像的分析,进一步探究反比例函数的增减性。2、掌握反比例函数的增减性,能运用反比例函数的性质解决一些简单的实际问题。教学重点:通过对反比例函数图像的分析,探究反比例函数的增减性。教学难点:由于受小学反比例关系增减性知识的负迁移,又由于反比例函数图像分成两条分支,给研究函数的增减性带来复杂性。教学方法:类比 启发教学辅助:多媒体 教学过程:一、复习:1反比例函数的图象经过点(1,2),那么这个反比例函数的解析式为_,图象在第_象限,它的图象关于_-成中心对称2反比例函数的图象与正比例函数Y=3X的图象,交于点A(1,m),则m_,反比例函数的解析式为_,这两个图象的另一个交点坐标是_.3、画出函数的图像.二、讲授新课1、引导学生观察函数的表格和图像说出y 与x之间的变化关系;(1)X-6-5-4-3-2-1123456y-1-1.2-1.5-2-3-66321.51.21(2)X-6-5-4-3-2-1123456y11.21.5236-6-3-2-1.51.2-12、做一做:1用“”或“”填空:(1)已知和是反比例函数的两对自变量与函数的对应值若,则 (2)已知和是反比例函数的两对自变量与函数的对应值若,则2已知(),(),()是反比例函数的图象上的三个点,并且,则的大小关系是() (A) (B) (C) (D)3已知(),(),()是反比例函数的图象上的三个点,则 的大小关系是_4已知反比例函数(1)当x5时,0y 1;(2)当x5时,则y 1,或y(3)当y5时,x的范围是 。3、讲解例题 例 下图是浙江省境内杭甬铁路的里程示意图。设从杭州到余姚一段铁路线上的列车行驶的时间为 时,平均速度为 千米/时,且平均速度限定为不超过160千米/时。(1)求v关于t的函数解析式和自变量t的取值范围;杭州萧山绍兴上虞余姚宁波2139312948(2)画出所求函数的图象(3)从杭州开出一列火车,在40分内(包括40分)到达余姚 可能吗?在50分内(包括50分)呢?如有可能,那么此时对列车的行驶速度有什么要求?小结:(1)自变量t不仅要符合反比例函数自身的式子有意义,而且要符合实际问题中的具体意义及附加条件。(2)对于在自变量的取值范围内画函数的图像映注意图像的纯粹性。(3)一般有;两种方法求自变量的取值范围:一是利用函数的增减性,二是利用图解法。练习:课本第16页课内练习第3题三、 小结:本节课我学到了 我的困惑四、比较正比例函数和反比例函数的性质正比例函数反比例函数解析式图像直线双曲线位置k0,一、三象限;k0,二、四象限k0,一、三象限k0,二、四象限增减性k0,y随x的增大而增大k0,y随x的增大而减小k0,在每个象限y随x的增大而减小k0,在每个象限y随x的增大而增大五、布置作业:见作业本板书设计:例2 练习解:教学反思:本节课学生对增减性质都能很好的理解,但掌握不是很好。学生对函数值的取值掌握不是很好,今后应多加练习。11-12反比例函数概念复习【教学目标】1、 进一步认识成反比例的量的概念。2、 结合具体情境体会反比例函数的意义,理解反比例函数的概念。3、 掌握反比例函数的解析式,会求反比例函数的解析式。【教学重点和难点】重点:反比例函数的定义和会求反比例函数的解析式。难点:目标2。教学方法:讲练法教学辅助:投影片【教学过程】一、知识要点:一般地,形如 y = ( k是常数, k = 0 ) 的函数叫做反比例函数。注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A)y = (k 0) , (B)xy = k(k 0) (C)y=kx-1(k0)二、例题讲解:1.、在下列函数表达式中,x均为自变量,哪些y是x的反比例函数?每一个反比例函数相应的k值是多少? (9)y=-2x-1 2、.若y=-3xa+1是反比例函数,则a= 。3.、若y=(a+2)为反比例函数关系式,则a= 。4、如果反比例函数y=的图象位于第二、四象限,那么m的范围为 x 1234y85435、下列的数表中分别给出了变量y与x之间的对应关系,其中是反比例函数关系的是x1234y6897 X1234y11/21/31/4x1234y58766、回答下列问题:(1)当路程 s 一定时,时间 t 与速度 v 的函数关系。(2)当矩形面积 S一定时,长 a 与宽 b 的函数关系。(3)当三角形面积 S 一定时,三角形的底边 y 与高 x的函数关系。(4)当电压U不变时,通过的电流I与线路中的电阻R的函数关系。7、实践应用 例1、设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm),求h关于a的函数解析式及自变量a的取值范围; h关于a的函数是不是反比例函数?如果是,请说出它的比例系数求当边长a=25cm时,这条边上的高。 例2、设电水壶所在电路上的电压保持不变,选用电热丝的电阻为R(),电水壶的功率为P(W)。 (1) 已知选用电热丝的电阻为50 ,通过电流为968w,求P关于R的函数解析式,并说明比例系数的实际意义。 (2)如果接上新电热丝的电阻大于50 ,那么与原来的相比,电水壶的功率将发生什么变化?例3、(1)y是关于x的反比例函数,当x=-3时,y=0.6;求函数解析式和自变量x的取值范围。(2)如果一个反比例函数的图象经过点(-2,5),(-5,n)求这个函数的解析式和n的值。(3)y与x+1成反比例,当x2时,y1,求函数解析式和自变量x的取值范围。 (4) 已知y与x-2成反比例,并且当x3时,y2求x1.5时y的值 (5)如果是的反比例函数,是的反比例函数,那么是的( ) A反比例函数 B正比例函数 C一次函数 D反比例或正比例函数三、练习:P21 14四、小结五、布置作业:另见练习卷板书设计: 例1 例2 例2 解: 解: 解 练习 练习1.3实际生活中的反比例函数 (1)教学目标:1、 经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想。2、 会综合运用反比例函数的解析式,函数的图像以及性质解决实际问题。3、 体验数形结合的思想。教学重点、难点:运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。教学方法:讲练法教学辅助:投影片教学过程:一、忆一忆1、 什么是反比例函数?它的图像是什么?具有哪些性质? 2、 小明家离学校3600米,他骑自行车的速度是x(米/分)与时间y(分)之间的关系式是 ,若他每分钟骑450米,需 分钟到达学校。 二、想一想例1、设ABC中BC的边长为x(cm) ,BC 边上的高AD为y(cm),ABC的面积为常数。已知y关于x 的函数图像过点(3,4)。(1) 求y关于x的函数解析式和ABC的面积。(2) 画出函数的图像,并利用图像,求当时y 的值。小结:1、根据实际问题中变量之间的数量关系建立函数解析式。2、根据给定的自变量的值或范围求函数的值或范围,可以应用函数的性质,也可以应用函数的图像;根据已知函数的值或范围求相应的自变量的值或范围,可以应用函数的性质和图像,也可以把问题转化为解方程或不等式。三、练一练设每名工人一天能做某种型号的工艺品x 个。若某工艺厂每天要生产这种工艺品60个,则需工人y名。(1)求y关于x的函数解析式。(2)若一名工人每天能做的工艺品个数最少6个,最多8个,估计该工艺品厂每天需要做这种工艺品的工人多少人? 四、说一说: 请你说一说本节课自己的收获并对自己参与学习的程度做出简单的评价.五、作业:见作业本板书设计: 例1解: 练习教学反思:本节课学生对增减性质掌握很好。学生对函数值的取值掌握很好。表达格式较好。1.3实际生活中的反比例函数(2)教学目标:1、经历分析实际问题中变量之间的关系建立反比例函数模型,进而解决实际问题的过程2、体会数学与现实生活的紧密性,培养学生的情感、态度,增强应用意识,体会数形结合的数学思想。3、培养学生自由学习、运用代数方法解决实际问题的能力。 教学重难点:重点是运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。难点是例2中变量的反比例函数关系的确定建立在对实验数据进行有效的分析、整合的基础之上,过程较为复杂。教学方法:启发法教学辅助:投影片教学过程:一、创设情境 、引入新课例2、在温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积和气体对气缸壁所产生的压强。(1)请根据表中的数据求出压强p(kpa)关于体积V(ml)函数解析式。(2)当压力表读出的压强为72 kpa时,气缸内的气体压缩到多少ml?体积V(ml)压强p(kpa)1006090678075708660100分析:(1)对于表中的实验数据你将作怎样的分析、处理?(2)能否用图像描述体积V与压强p的对应值?(3)猜想压强p 与体积V之间的函数类别?师生一起解答此题。并引导学生归纳此种数学建模的方法与步骤:(1)由实验获得数据 (2)用描点法画出图像(3)根据图像和数据判断或估计函数的类别(4)用待定系数法求出函数解析式 (5)用实验数据验证指出:由于测量数据不完全准确等原因,这样求得的反比例函数的解析式可能只是近似地刻画了两个变量之间的关系。二、巩固练习课本第20页第5题三、说一说: 请你说一说本节课自己的收获四、作业板书设计: 例2解: 练习教学反思:本节课学生对建模思想不是掌握很好,有待于今后教学多给予渗透。第一章 反比例函数 (复习课)教学目标:1、通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律2、结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题3、让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力。教学重点:反比例函数的图像和性质在实际问题中的运用。教学难点:运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法。教学方法:讲练法教学辅助:投影片教学过程:一、知识回顾 1、什么是反比例函数?2、你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流。二、练一练1 、 反比例函数y=-的图象是 ,分布在第 象限,在每个象限内, y都随x的增大而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x1x2 , 则y1 y2。3、已知反比例函数,若x1 x2 ,其对应值y1,y2 的大小关系是 4、如图在坐标系中,直线y=x+ k与双曲线 在第一象限交与点A, 与x轴交于点C,AB垂直x轴,垂足为B,且SAOB1 1)求两个函数解析式;2)求ABC的面积.6、已知反比例函数的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数的图象与x轴的交点坐标。三、小结:1、本节复习课主要复习本章学生应知应会的概念、图像、性质、应用等内容,夯实基础提高应用。2、充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.四、作业: 另发试卷板书设计:练习 练习解: 解:教学反思:本节课教学目标都能落实,但解题速度不快,今后应多加练习。第一章 反比例函数测试卷基础达标验收卷一、选择题:1. 已知反比例函数的图象经过点,则函数可确定为( )A. B. C. D. 2. 如果反比例函数的图象经过点,那么下列各点在此函数图象上的是( )A. B. C. D. 3. 如右图,某个反比例函数的图象经过点P,则它的解析式为( )A. B. C. D. 4. 如右图是三个反比例函数,在x轴上方的图象,由此观察得到、的大小关系为( )A. B. C. D. 5. 已知反比例函数的图象上有两点、且,那么下列结论正确的是( )A. B. C. D与之间的大小关系不能确定6、已知反比例函数的图象如右图,则函数的图象是下 图中的( ) 7、已知关于x的函数和(k0),它们在同一坐标系内的图象大致是( ) 8、如图,点A是反比例函数图象上一点,ABy轴于点B,则AOB的面积是( )A. 1B. 2C. 3D. 49、 某闭合电路中,电源的电压为定值,电流I(A)与电阻R()成反比例. 右图表示的是该电路中电流I与电阻R之间的图象,则用电阻R表示电流I的函数解析式为( )A. B. C. D. 二、填空题:1. 我们学习过反比例函数. 例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为(S为常数,S0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:_;函数关系式:_.2. 右图是反比例函数的图象,那么k与0的大小关系是.3. 点在双曲线上,则k=_.4. 近视眼镜的度数y(度)与镜片焦距x(米)成反比例. 已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是_.5. 已知反比例函数的图象经过点,则a=_.三、解答题:1. 已知一次函数的图象与反比例函数的图象在第一象限交于点,求k,n的值.2. 已知反比例函数的图象与一次函数的图象相交于点.(1)分别求这两个函数的解析式.(2)试判断点关于x轴的对称点是否在一次函数的图象上.3. 反比例函数的图象经过点.(1)求这个函数的解析式;(2)请判断点是否在这个反比例函数的图象上,并说明理由.4. 在压力不变的情况下,某物承受的压强P(Pa)是它的受力面积S(m2)的反比例函数,其图象如右图所示.(1)求P与S之间的函数关系式;(2)求当S=0.5m2时物体所受的压强P.5. 如图,反比例函数与一次函数的图象交于A、B两点.(1)求A、B两点的坐标;(2)求AOB的面积.能力提高练习一、学科内综合题1. 如右图,OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是_.2. 已知反比例函数和一次函数.(1)若一函数和反比例函数的图象交于点,求m和k的值.(2)当k满足什么条件时,这两个函数的图象有两个不同的交点?(3)当时,设(2)中的两个函数图象的交点分别为A、B,试判断A、B两点分别在第几象限?AOB是锐角还是钝角(只要求直接写出结论)?二、学科间综合题3. 若一个圆锥的侧面积为20,则下图中表示这个圆锥母线长l与底面半径r之间函数关系的是( ) 三、实际应用题4. 某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米. 设健身房的高为3米,一面旧墙壁AB的长为x米,修建健身房的总投入为y元.(1)求y与x的函数关系式;(2)为了合理利用大厅,要求自变量x必须满足8x12. 当投入资金为4800元时,问利用旧墙壁的总长度为多少米?5、为了预防“非典”,某学校对教室采用药熏消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示). 现测得药物8分钟燃毕,此时室内空气中每立方米含药量为6毫克. 请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为:_,自变量x的取值范围是:_;药物燃烧后y关于x的函数关系式为:_;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?第二章 二次函数2.1 建立二次函数模型一、学生知识状况分析学生的知识技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础。二、教学任务分析教学目标 (一)知识与技能1探索并归纳二次函数的定义 2能够表示简单变量之间的二次函数关系 (二)过程与方法 1经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系 2让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系 3. 能够利用尝试求值的方法解决实际问题 (三)情感态度与价值观 1从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲 2把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用 3通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识教学重点:二次函数的概念教学难点:经历探索,分析和建立两个变量之间的二次函数关系的过程函 数一次函数y=kx+b (k0)反比例函数正比例函数y=kx(k0)变量之间的关系三、教学过程分析第一环节 课前准备活动内容:引导学生复习函数的概念及已经学习过的几种函数:1.对“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?我们学过那些关于函数的生活实际问题呢?2.函数的定义是怎样下的?3.让我们一起来回忆一下这些函数的一般形式。活动目的:函数是对初中生来说是较抽象的概念,而且学生距离之前学习函数相关内容有较长时间间隔,这里有必要从学生已有的知识经验出发,学习新的内容,注重知识之间的联系,调动学生学习的积极性与主动性,也为接下来的学习作好铺垫。第二环节 创设问题情境,引入新课活动内容:投影片:(21A)某果园有100棵橙子树,每一棵树平均结600个橙子现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式(4)大家根据刚才的分析,判断一下上式中的y是否是x的函数?若是函数,与原来学过的函数相同吗?请大家先独立思考,再互相交流后回答活动目的:此处提问时先由学生思考哪些是变量,等学生思考并回答后再提问哪些是自变量,哪些是因变量。这样设计问题由简单到复杂,逐步推进,同时也可让学生初步体会到问题中所蕴涵着的函数关系。第三环节 想一想活动内容:如果你是果园的负责人,你最关心的问题是什么?(在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?)Y/个1413121110987654321X/棵你能根据表格中的数据作出猜测吗?安排学生思考,可以是小组合作,也可以是自主学习的形式,然后组织交流。在反映函数什变化过程中,教师用自己的手势向学生说明此函数的增减性,010时y随x的增大而增大,1020时y随x的增大而减小,使学生形成对二次函数图象的初步印象活动目的:让学生作主,在生活情景中学习数学,带着兴趣学数学,体验每个人都学有用的数学。用统计的方法得到关于最大产量的一种猜想,问题的最后解决留在以后。第四环节 做一做活动内容:投影片:(21B)银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的(本金是存入银行时的资金,利息是银行根据利率和存的时间付给的“报酬”,本息和就是本金和利息的和利息本金利率期数(时间))设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)在这个关系式中,y是x的函数吗?活动目的:通过解决生活中数学问题,进一步熟悉用函数解析式反映变化过程,第五环节 归纳总结活动内容:从我们刚才推导出的式子y5x2100x60000和y100x2200x100中,大家能否根据式子的形式,猜想出二次函数的定义及一般形式呢?一般地,形如yax2bxc(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)提问:1上述概念中的a为什么不能是0?2对于二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?3由问题1和2,你能否总结:一个函数是否是二次函数,关键看什么?4二次函数的解析式,与我们所学过的什么知识相类似?通过这个问题,使学生能把二次函数与一元二次方程初步搭上联系即可,为以后的教学做好铺垫由这三个问题加深学生对二次函数意义的理解,也同时给出了二次函数的三个特例:y=ax2+bx(a0);y=ax2+c(a0);y=ax2(a0),使学生深刻理解:看一个函数是否是二次函数的关键是看二次项的系数是否为0例1下列函数中,哪些是二次函数?(1)y=3(x-1)+1 (2)y=x+1/x (3)s=3-2t (4) y=1/x-x (5) v= r 例2、用总长为60m的篱笆围成矩形场地,场地面积S(m)与矩形一边长a(m)之间的关系是什么?是函数关系吗?是哪一种函数?活动目的:在以上两例的基础上,给出二次函数的定义,并举出以前所见到的一些二次函数关系式,通过练习加强对二次函数的理解。注意:(1)关于x的代数式一定是整式,a,b,c为常数,且a0.(2)等式的右边自变量的最高次数为2,可以没有一次项和常数项,但不能没有二次项.(3)二次函数y=ax+bx+c(a,b,c是常数,a0)还有以下几种特殊表示形式:y=ax - (a0,b=0,c=0,).y=ax+c - (a0,b=0,c0).y=ax+bx - (a0,b0,c=0).第六环节 课堂反馈活动内容.下列函数中,哪些是二次函数?(1)v=10r (3) s=3-2t (5) y=(x+3)-x (6) y=3(x-1)+1;.用总长为60m的篱笆围成矩形场地,场地面积S(m)与矩形一边长a(m)之间的关系式是什么?它是什么函数?.如果函数y= +kx+1是二次函数,则k的值一定是_ .如果函数y=(k-3) +kx+1是二次函数,则k的值一定是_ 圆的半径是4cm,假设半径增加xcm时,圆的面积增加ycm.(1)写出y与x之间的函数关系表达式;(2)当圆的半径分别增加1cm, 2cm时,圆的面积增加多少?活动目的:通过“随堂练习”和习题,学生进一步明确二次函数的概念和进一步体会二次函数所描述的关系。实际教学效果:学生基本都能理解二次函数的概念,判断那些函数是二次函数,使学生感受二次函数与生活的密切联系。第七环节 布置作业必做题: 课本P36-37习题2.1第1、2题;选做题: 课本P77B组第2题。2.2二次函数的图象与性质(1)一、学生知识状况分析学生的知识技能基础:学生在前面已经学习过一次函数、反比例函数,经历过探索、分析和建立两个变量之间的一次函数、反比例函数关系的过程,并学会了用描点法作出函数图象的方法。在本章第一节课中,又学习了二次函数的概念,经历了探索和表示二次函数关系的过程,获得了用二次函数表示变量之间关系的体验。学生活动经验基础:在学习一次函数、反比例函数过程中,学会了用描点法作出函数图象的方法,学生已具备了一定的作图能力,并经历了利用一次函数、反比例函数图象探索函数性质的活动,解决了一些简单的现实问题,感受到了数形结合的必要性和重要性,获得了一些探究函数图象和性质的数学活动经验基础。二、教学任务分析教学目标是:(一)知识与技能 1能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质 2猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同 (二)过程与方法 1经历探索二次函数yx2的图象的作法和性质的过程,获得利用图象研究函数性质的经验 2由函数y=x2的图象及性质,对比地学习y-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维 (三)情感与态度 1通过学生自己探索活动,达到对抛物线自身特点的认识和对二次函数性质理解2在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质教学重点:作出函数yx2的图象,并根据图象认识和理解二次函数yx2的性质。教学难点:由y=x2的图象及性质对比地学习y-x2的图象及性质,并能比较出它们的异同点。三、教学过程分析第一环节 情境引入(生活中的抛物线)活动内容:寻找生活中的抛物线活动目的:通过让学生寻找生活中的抛物线,让生活走进数学,让学生对抛物线有感性认识,以激发学生的求知欲,同时,让学生体会到数学来源于生活。实际教学效果:学生通过开动脑筋,产生联想,寻找出生活中大量的类似抛物线的事物,再通过师生共同鉴定、修正,使学生获得大量对抛物线感性认识的经验。第二环节 温故知新活动内容:复习:(1)二次函数的概念,(2)画函数的图象的主要步骤,(3)根据函数y=x2列表活动目的:让学生回忆与本节课有关的主要知识,为本节课探究二次函数的图象和性质做知识上、经验上的准备。第三环节 合作学习(探究二次函数yx2的图象和性质)活动内容:1. 用描点法画二次函数y=x2的图象,并与同桌交流。2. 观察图象,探索二次函数y=x2的性质,提出问题:(1) 你能描述图象的形状吗?与同伴进行交流.(2) 图象是轴对称图形吗?如果是,它的对称轴是什么? 请你找出几对对称点,并与同伴交流.(3)图象 与x轴有交点吗?如果有,交点坐标是什么?(4)当x0呢?(5)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的?3.二次函数y=x2的图象是什么形状?先想一想,然后作出它的图象4.它与二次函数y=x2的图象有什么关系?与同伴进行交流。5.说说二次函数y=x2的图象有哪些性质?与同伴交流。活动目的:1经历探索二次函数yx2的图象的作法和性质的过程,获得利用图象研究函数性质的经验 2由函数y=x2的图象及性质,对比地学习y-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维3. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解 4在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质实际教学效果:1. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解 2在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质oyxA第四环节 练习与提高活动内容:1、已知函数 是关于x 的二次函数。求: (1)满足条件的m 的值; (2)m为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时当x 为何值时,y 随x 的增大而减小?2、已知点A(1,a)在抛物线y=x2 上。 (1)求A的坐标; (2)在x 轴上是否存在点P,使得OAP是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由。活动目的:1.对本节知识进行巩固练习。2.将获得的新知识与旧知识相联系,共同纳入知识系统。3.培养学生整合知识的能力。第五环节 课堂小结活动内容:小结:二次函数y= x2的性质活动目的:培养学生整理知识、归纳知识的习惯。第六环节 布置作业P41 习题2.2 1,2题1说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状.2设正方形的边长为a,面积为S,试作出S随a的变化而变化的图象.2.2二次函数的图象与性质(2)一、学生知识状况分析学生的知识技能基础:学生经过上一节课的学习,对于抛物线已经有了初步的认识,可以利用描点法作出抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质。学生活动经验基础:学生在上节课经历利用描点法作出抛物线的图象的活动过程,因此对于作出二次函数和的图象不会存在太大问题;由于二次函数的图象比较直观,因此在分析两个或者多个二次函数的图象形状、开口方向、对称轴、顶点坐标时,也有了上一节课的活动基础。二、教学任务分析本节课要研究的问题是关于函数和的图象的作法和性质,逐步积累研究函数图象和性质的经验为此,本节课的教学目标是:知识与技能1.能作出二次函数和的图象,并能够比较它们与二次函数的图象的异同,理解与对二次函数图象的影响。2.能说出二次函数和图象的开口方向、对称轴、顶点坐标。过程与方法经历探索二次函数和的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验。情感态度与价值观体会二次函数是某些实际问题的数学模型,由有趣的实际问题,使学生能积极参与数学学习活动,对数学有好奇心和求知欲。教学重点:和图象的作法和性质教学难点:能够比较、和的图象的异同,理解与对二次函数图象的影响。三、教学过程分析 第一环节 情境创设活动内容:1.二次函数yx2与y=-x2的图象一样吗?它们有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州行测国考题库及答案详解(必刷)
- 2025上海科学院事业单位工作人员招聘4人(第三批)考试模拟试题及答案解析
- 2025年汽车销售退换货处理合同
- 2025年新能源储能技术在分布式光伏电站中的应用报告
- 2025年医学影像技术专业考试试卷及答案
- 2025年滇中城市群低空经济「跨境通道」航空物流服务创新与客户体验报告
- 2025年新能源汽车出口市场政策法规影响分析报告
- 2025年低空通信基站建设与运营模式研究报告
- 2025年新能源汽车电池回收利用产业园区产业园区绿色发展与生态保护报告
- 2025年肺结核与糖尿病共病的治疗管理试题含答案
- 《中华人民共和国未成年人保护法》宣贯培训2024
- 公司员工反腐倡廉管理制度
- 如愿音乐课件
- 华为fgOTN(细颗粒光传送网)技术白皮书
- 金融营销-试题及答案
- 人教版英语2024七年级上册全册单元知识清单(背诵版)
- 第4课 化解冲突有办法 (教学设计)-苏教版心理健康四年级上册
- SBT 11215-2018 商品交易市场建设与经营管理术语
- 2024春苏教版《亮点给力大试卷》 数学四年级下册(全册有答案)
- GB/T 35594-2023医药包装用纸和纸板
- 2021变电站端子箱
评论
0/150
提交评论