




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 6 含对数的函数 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 25对数函数的导数及应用 一、课前准备: 【自主梳理】 1, 2, 3已知,则 4已知,则 【自我检测】 1函数的单调减区间为 _ 2直线是曲线的一条切线,则实数 b 3曲线上的点到直线的最短距离是 4已知函数,则在区间上的最大值和最小值分别为 和 5已知函数,若函数与在区间上均为增函数 ,则实数的取值范围为 二、课堂活动: 【例 1】填空题: ( 1)函数的 单调递增区间是 ( 2)点是曲线上任意一点 ,则点到直线的距离的最小值是 ( 3)若函数在定义域内是增函数,则实数的取值范围是 2 / 6 ( 4)已知函数,则曲线在点处的切线方程为 _。 【例 2】已知函数 ( )若,求曲线在点处的切线方程; ( )求的极值; ( )若函数的图象与函数的图象在区间上有公共点,求实数的取值范围 【例 3】已知函数 () 若曲线在和处的切线互相平行,求的值; () 求的单调区间; () 设,若对任意,均存在,使得,求的取值范围 三、课后作业 1已知函数,则函数的单调增区间为 2已知函数的图象在点(为自然对数的底数)处的切线斜率为 3则实数的值为 3已知函数,则曲线在点处的切线方程为 4已知函数 f(x)=x2 x alnx,当时,恒成立,则实数的取值范围为 5已知函数且,其中、则 m 的值为 6若 f( x) =上是减函数,则 b 的取值范围是 7设函数若直线 l 与函数的图象都相切,且与函数的图象相切于点,则实数 p 的值 3 / 6 8已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线 相同,则用可用表示为 _ 9已知函数 () 若,求曲线在处切线的斜率; () 求的单调区间; ( )设,若对任意,均存在,使得,求的取值范围 10设函数(), (1)若函数图象上的点到直线距离的最小值为,求的值; (2)关于的不等式的解集中的整数恰有 3 个,求实数的取值范围; (3)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的 “ 分界线 ” 设,试探究与是否存在 “ 分界线 ” ?若存在,求出 “ 分界线 ” 的方程;若不存在,请说明理由 四、纠错分析 错题卡题号错题原因分析 参考答案: 【自我检测】 1 2 ln2 13 4和 5 二、课堂活动: 4 / 6 【例 1】( 1)( 2)( 3)( 4) 【例 2】解:( ) , 且 又 , 在点处的切线方程为:,即 ( )的定义域为,令得当时,是增函数;当时,是减函数; 在处取得极大值,即 ( )( i)当,即时,由( )知在上是增函数,在上是减函数, 当时,取得最大值,即又当时,当时,当时,所以,的图像与的图像在上有公共点,等价于,解得,又因为,所以 ( ii)当,即时,在上是增函数, 在上的最大值为, 原问题等价于,解得,又 无解 综上,的取值范围是 【例 3】解: ( ),解得 ( ) 当时,在区间上,;在区间上, 故的单调递增区间是,单调递减区间是 当时,在区间和上,;在区间上, 故的单调递增区间是和,单调递减区间是 当时,故的单调递增区间是 当时,在区间和上,;在区间上, 5 / 6 故的单调递增区间是和,单调递减区间是 ( )由已知,在上有 由已知,由( )可知, 当时,在上单调递增,故, 所以,解得,故 当时,在上单调递增,在上单调递减,故由可知,所以,综上所述, 三、课后作业 1( 1, + ) 2 3 4 5 m=1 6( - , -1) 7 p=1或 p=38 9解: () 由已知,故曲线在处切线的斜率为 () 当时,由于,故, ,所以,的单调递增区间为 当时,由,得在区间上,在区间上, 所以,函数的单调递增区间为,单调递减区间为 ( )由已知,转化为 由 () 知,当时,在上单调递增,值域为,故不符合题意 (或者举出反例:存在, 故不符合题意 ) 当时,在上单调递增,在上单调递减, 故的极大值即为最大值, 所以,解得 10解:( 1)因为,所以,令,得:,此时,则点到直线的距离为, 6 / 6 即,解之得 ( 2)解法一:不等式的解集中的整数恰有 3 个, 等价于恰有三个整数解,故, 令,由且, 所以函数的一个零点在区间, 则另一个零点一定在区间,故解之得 解法二:恰有三个整数解,故,即, ,所以,又因为,所以,解之得 ( 3)设,则 所以当时,;当时,因此时,取得最小值,则与的图象在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游戏行业全景解析
- 手指课件内容
- 智能采收能耗优化-洞察及研究
- 不锈钢楼梯安装安全协议书7篇
- 统编版2025-2026学年语文六年级上册第一、二单元综合测试卷(有答案)
- 内蒙古锡林郭勒盟二连浩特市第一中学2024-2025学年九年级上学期期末检测化学试卷(无答案)
- 2025届安徽省安庆市安庆九一六高级中学高三下学期第5次强化训练物理试卷(含答案)
- 欧美医耗市场准入策略-洞察及研究
- 学生手机安全培训心得课件
- 扇形统计图说课稿课件
- 2025湖南生物机电职业技术学院单招《语文》考试历年机考真题集【必考】附答案详解
- 2024年齐齐哈尔市公安局招聘警务辅助人员真题
- 4.2《让家更美好》 课件 2025-2026道德与法治七年级上册 统编版
- 2025耿马傣族佤族自治县司法局面向社会公开招聘司法协理员(10人)考试参考题库及答案解析
- 北师大版三年级上册第八单元8.1《评选吉祥物》课时练(含答案)
- ERCP护理题库及答案解析
- 2025年百里香酚行业研究报告及未来行业发展趋势预测
- 2025年网络信息安全技术岗位专业知识试卷及答案解析
- 2025四川广元市园区建设投资集团有限公司招聘13人考试模拟试题及答案解析
- 检验员技能测试题及答案
- 化学原电池教学课件
评论
0/150
提交评论