




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章函数概念与基本初等函数I,2.9函数模型及其应用,内容索引,基础知识自主学习,题型分类深度剖析,答题模板系列,思想方法感悟提高,练出高分,基础知识自主学习,1.几类函数模型及其增长差异(1)几类函数模型,知识梳理,1,(2)三种函数模型的性质,递增,递增,y轴,x轴,答案,2.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;,(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:,判断下面结论是否正确(请在括号中打“”或“”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)幂函数增长比直线增长更快.()(3)不存在x0,使()(4)在(0,)上,随着x的增大,yax(a1)的增长速度会超过并远远大于yxa(a0)的增长速度.(),答案,思考辨析,(5)“指数爆炸”是指数型函数yabxc(a0,b0,b1)增长速度越来越快的形象比喻.()(6)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.(),答案,1.(2015北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.,注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为_升.,考点自测,2,解析答案,1,2,3,4,5,解析由表知:汽车行驶路程为3560035000600千米,耗油量为48升,每100千米耗油量8升.答案8,解析答案,1,2,3,4,5,2.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为_.,当y12时,S有最大值,此时x15.,15,12,解析答案,1,2,3,4,5,解析设年平均增长率为x,则(1x)2(1p)(1q),,3.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为_.,解析答案,1,2,3,4,5,4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为_.解析设隔墙的长度为x(0x6),矩形面积为y,,当x3时,y最大.,3,解析答案,1,2,3,4,5,5.(2015四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系yekxb(e2.718为自然对数的底数,k,b为常数).若该食品在0的保鲜时间是192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是_小时.,24,解析答案,1,2,3,4,5,返回,题型分类深度剖析,题型一用函数图象刻画变化过程,例1(1)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是_(填序号).,解析答案,解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除.因交通堵塞停留了一段时间,与学校的距离不变,故排除.后来为了赶时间加快速度行驶,故排除,符合题意.答案,(2)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是_(填序号).,解析答案,思维升华,解析由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凹的,故正确.答案,思维升华,思维升华,判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.,已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,ABP的面积为S,则函数Sf(x)的图象是_(填序号).,解析依题意知当0x4时,f(x)2x;当4x8时,f(x)8;当8x12时,f(x)242x,观察四个图象知,正确.,跟踪训练1,解析答案,题型二已知函数模型的实际问题,例2候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为vablog3(其中a、b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.,即ab0;当耗氧量为90个单位时,速度为1m/s,,解由题意可知,当这种鸟类静止时,它的速度为0m/s,此时耗氧量为30个单位,,(1)求出a、b的值;,解析答案,(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?,所以要使飞行速度不低于2m/s,,所以若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要270个单位.,解析答案,思维升华,思维升华,求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.,某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为_kg.,解析由图象可求得一次函数的解析式为y30 x570,令30 x5700,解得x19.,19,跟踪训练2,解析答案,题型三构造函数模型的实际问题,命题点1构建二次函数模型,例3某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y14.1x0.1x2,在B地的销售利润(单位:万元)为y22x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是_万元.,解析答案,因为x0,16,且xN,所以当x10或11时,总利润取得最大值43万元.答案43,解析设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16x)辆,,命题点2构建指数函数、对数函数模型,例4(1)世界人口在过去40年翻了一番,则每年人口平均增长率约是_(参考数据:lg20.3010,100.00751.017).解析设每年人口平均增长率为x,则(1x)402,两边取以10为底的对数,则40lg(1x)lg2,,所以100.00751x,得1x1.017,所以x1.7%.,1.7%,解析答案,(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为_.略有盈利略有亏损没有盈利也没有亏损无法判断盈亏情况解析设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(110%)na1.1n元,经历n次跌停后的价格为a1.1n(110%)na1.1n0.9na(1.10.9)n0.99naa,故该股民这支股票略有亏损.,解析答案,命题点3构建分段函数模型,例5某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了_km.解析设出租车行驶xkm时,付费y元,,9,由y22.6,解得x9.,解析答案,思维升华,思维升华,构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.,(1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据道路交通安全法规定:驾驶员血液中的酒精含量不得超过0.09mg/mL,那么,此人至少经过_小时才能开车.(精确到1小时)解析设经过x小时才能开车.由题意得0.3(125%)x0.09,0.75x0.3,xlog0.750.34.19.x最小为5.,5,跟踪训练3,解析答案,(2)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为_.,解析答案,返回,即x10时取等号.,答案10,解析设该企业需要更新设备的年数为x,设备年平均费用为y,则x年后的设备维护费用为242xx(x1),,返回,答题模板系列,答题模板系列,2.函数应用问题,解析答案,规范解答解当0x40时,WxR(x)(16x40)6x2384x40,2分,(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.,思维点拨根据题意,要利用分段函数求最大利润.列出解析式后,比较二次函数和“对勾”函数的最值的结论.,答题模板,解析答案,返回,温馨提醒,思维点拨,即x50(40,)时,取等号,所以W取最大值为5760.12分综合知,当x32时,W取得最大值6104万元.14分,规范解答解当0x40时,W6(x32)26104,所以WmaxW(32)6104;8分,答题模板,温馨提醒,答题模板,解函数应用题的一般程序第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.,温馨提醒,温馨提醒,返回,(1)此类问题的关键是正确理解题意,建立适当的函数模型.(2)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.,思想方法感悟提高,1.认真分析题意,合理选择数学模型是解决应用问题的基础.2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.3.解函数应用题的五个步骤:审题;建模;解模;还原;反思.,方法与技巧,1.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.,失误与防范,返回,练出高分,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1.若一根蜡烛长20cm,点燃后每小时燃烧5cm,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为_.,解析根据题意得解析式为h205t(0t4),其图象为.,15,解析答案,2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是_元.解析设进货价为a元,由题意知132(110%)a10%a,解得a108.,108,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,3.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是_.,解析前3年年产量的增长速度越来越快,说明呈高速增长,只有图象符合要求,而后3年年产量保持不变,故正确.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,4.将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为_元.解析设每个售价定为x元,则利润y(x80)400(x90)2020(x95)2225.当x95时,y最大.,95,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,5.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x元(叫做税率x%),则每年销售量将减少10 x万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x的最小值为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,解得2x8.故x的最小值为2.答案2,1,2,3,4,5,6,7,8,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南通市中石化2025秋招笔试模拟题含答案行测综合英语
- 天津市中储粮2025秋招面试典型题目及答案
- 国家能源武汉市2025秋招化学工程类面试追问及参考回答
- 国家能源铜陵市2025秋招机械工程类面试追问及参考回答
- 安阳市中石化2025秋招笔试提升练习题含答案
- 丽江市中石化2025秋招笔试模拟题含答案新材料与新能源岗
- 株洲市中石化2025秋招面试半结构化模拟题及答案电气仪控技术岗
- 许昌市中储粮2025秋招购销统计岗高频笔试题库含答案
- 大唐电力鸡西市2025秋招半结构化面试模拟30问及答案
- 武威市中石油2025秋招心理测评常考题型与答题技巧
- 沪教版九年级上册化学第三章《物质构成的奥秘》检测卷(含答案解析)
- 如何与客户建立有效的沟通
- 薯片加工项目规划设计方案
- 复方电解质醋酸钠葡萄糖注射液-药品临床应用解读
- 变压器租赁协议书x
- 部编版小学数学六年级上册分数乘法应用题解法一:找单位“1”解析同步练习
- 危重产科患者麻醉管理
- 宾馆旅客财物保管制度
- 学前教育政策法规全套精美课件
- 三相桥式整流
- 【乡土地理课程开发与教学应用研究文献综述1700字】
评论
0/150
提交评论