模型思想的学习分享.ppt_第1页
模型思想的学习分享.ppt_第2页
模型思想的学习分享.ppt_第3页
模型思想的学习分享.ppt_第4页
模型思想的学习分享.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“模型思想”的学习分享,海珠区教育发展中心杨丽芳,10个核心概念中唯一一个以“思想”指称的概念。三大基本思想之一抽象、推理、模型,所谓数学模型,就是根据特定的研究目的,采用形式化的数学语言,去抽象地、概括地表征所研究对象的主要特征、关系所形成的一种数学结构。,在义务教育阶段,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。,所谓数学模型,就是根据特定的研究目的,采用形式化的数学语言,去抽象地、概括地表征所研究对象的主要特征、关系所形成的一种数学结构。,在义务教育阶段,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。,简要地说,数学模型就是一种形式化的数学结构。两个主要特点:一是,它是经过抽象、舍去对象的一些非本质属性以后所形成的一种纯数学关系结构。二是,这种结构是借助数学符号来表示,并能进行数学推演的结构。,从两层次去理解,广义的理解是把那些凡是针对客观对象加以一级或多级抽象得到的形式结构都视为客观对象的模型狭义的理解是指对特定现实问题或具体实物对象进行数学抽象所得到的数学模型。中小学阶段主要指的是后者。,张奠宙、李士锜、李俊在数学教育学导论中指出:“数学,本身就是一种数量的模型”。“数学模型也包括从现实原型抽象概括出来的一切数学概念、各种数学公式、方程式、定理、理论体系等等算术是现实生活中数量增减的模型;方程是各种等量关系的模型;矩阵是研究线性关系的模型;极限论是处理无限关系的模型等等。因此学习数学的过程就是学习如何建立数学模型的过程”,张奠宙教授认为,“广义地讲,数学中各种基本概念和基本算法,都可以叫做数学模型。加减乘除都有各自的现实原型,它们都是以各自相应的现实原型作为背景抽象出来的。但是,按通行的比较狭义的解释,只有那些反映特定问题或特定的具体事物系统和数学关系结构才叫做数学模型。例如,平均分派物品的数学模型是分数;元角分的计算模型是小数的运算;500人的学校里一定有两个人一起过生日,其数学模型就是抽屉原理。”,个人理解:严格意义上的数学建模与模型思想的渗透不是完全等同的数感、符号意识、空间观念等的培养为其重要基础。,模型思想作为一种思想要真正使学生有所感悟需要经历一个长期的过程,在这一过程中,学生总是从相对简单到相对复杂,从相对具体到相对抽象,逐步积累经验、掌握建模方法,逐步形成运用模型去进行数学思维的习惯。教师在教学中要注意根据学生的年龄特征和不同学段的要求,逐步渗透模型思想。,第一学段:引导学生经历从现实情境中抽象出数、从简单几何体到平面图形的过程和从简单数据收集、整理的过得,使学生学会用适当的符号来表示这些现实情境中的简单现象,并提出一些力所能及的数学问题。,第二学段:通过一些具体问题,引导学生通过观察、分析抽象出更为一般的模式表达,如用字母表示有关的运算定律运算性质,路程时间速度等关系式。,建立模型思想的本质,模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立模型思想的本质就是使学生体会和理解数学与外部世界联系。,来源于现实,又作用于现实,模型思想的渗透在我们已有的教学实践中有充分的体现,具体事物,符号化,数的模型,具体化,6的认识,四则运算意义体现模型思想,几何模型,第一次抽象,第二次抽象舍去高矮长短宽窄等非本质特征,几何模型,S=r2,计算公式是模型,数据统计分析模型,方程是刻画等量关系的模型,比的应用模型思想的渗透,浓缩液和水的体积比1:2,现实情境,从实际问题中抽象出数学问题,浓缩液和水的体积比14是什么意思?,浓缩液,分析数量关系,浓缩液和水的体积按1:4的比配制一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?,初步构建模型,题目结构:已知浓缩液与水的体积和,及浓缩液与水的体积比,分别求它们的体积是多少。解题方法:可以用两种方法解答。方法一:(1)根据比求出总份数。(2)求出一份的体积。(3)根据浓缩液和水所占的份数分别求出它们的体积。方法二:根据比求出浓缩液和水的体积分别占总体积的几分之几,然后根据分数乘法的意义用乘法分别求出浓缩液和水的体积。,结合黑板板书小结题目结构及解题方法,对应练习题也像例题那样结合具体的题目引导学生初步认识题目的结构特点以及解题方法,在此基础上再通过下一张的PPT作进一步的抽象概括,最后构建解题模型。,初步构建模型,浓缩液和水的体积按1:4的比配制一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?,把120份礼物按2:1奖给一班和二班,两班各分得几份?,学校把栽70棵树的任务,按照六年级三个班46:44:50人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵树?,已知几个量的和,,与这几个量的比,,分别求这几个量是多少?,题目特征:已知两个数的和与这两个数的比,分别求这两个数。解题方法:仿照例题的表述。(略),在小学阶段,不强调这种表达,更一般的表达:已知a+b=c,a:b=m:n,求m和n则a=c,b=c,实际情景,数学问题,找出数量关系,解决问题,检验,抽象,析分,式列,知识运用,问题情境建立数学模型解释应用拓展,实际问题数学问题,数学问题数学模型,建模过程与以往我们所提倡的解决问题的两个转化相一致。,由此我们知道,“模型思想”作为核心概念提出来,不是无缘无故、无凭无据的,而是有丰富的实践经验作为其基础的。,自发、无意识、不稳定,自觉、主动的、有意识地渗透,通过问题的导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论