




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
命题与简单逻辑关系,何东下列句子中,你能判断它们的真假吗?,若直线ab,则直线a和直线b无公共点。,中国国足进入过世界杯。,刘翔是世界冠军吗?,x6,我爱你。,96,你好帅啊!,命题的概念,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。判断为真的语句叫做真命题。判断为假的语句叫做假命题。理解:命题定义的核心是判断,切记:判断的标准必须确定,判断的结果可真可假,但真假必居其一。,观察下列命题,判断它们的真假,空集是任何集合的子集,真命题,若整数a是素数,则a是奇数,假命题,假命题,二次函数的图像是一条抛物线。,真命题,判断一个语句是不是命题,关键看这语句是否符合“是陈述句”和“可以判断真假”这两个条件。,命题的构成,通常,我们把命题表示为“若p,则q”的形式,p叫做命题的条件,q叫做命题的结论。“若p则q”形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q”“只要p,就有q”等形式。“若p则q”形式的命题的优点是条件与结论容易辨别。,如果明天下雨,那么我们不上课。,解:1)条件p:结论q:,明天下雨,我们不上课,所有的同学都迟到了。,命题的构成,我们班的同学都考上了美院。,有人没来上课,我们把这一类命题叫做全称存在量词型命题,符号为全称量词,表示任意一个;符号为存在量词,表示存在一个。,若原命题为:若p,则q则它的逆命题为:若q,则p,例:求命题“若a=0,则ab=0”的逆命题,逆命题,若ab=0,则a=0,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题,其中一个命题叫原命题,另一个叫做原命题的逆命题。,因此若原命题为“若p,则q”,则否命题为:若p,则q”,例:若a=0,则ab=0否命题为:,若a0,则ab0.,否命题,一般地,把条件p,结论q的否定分别记作“p,q”,读作“非p”、“非q”.,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么这样的两个命题叫做互否命题,其中一个叫原命题,另一个叫原命题的否命题.,即若原命题为:“若p,则q”,则它的逆否命题为“若q,则p”,例:“若a=0,则ab=0”的逆否命题为:,若ab0,则a0.,逆否命题,写出下列命题的逆命题、否命题、逆否命题,并判断真假。,逆命题,否命题,逆否命题,真命题,真命题,假命题,假命题,(1)原命题,写出下列命题的逆命题、否命题、逆否命题,并判断真假。,逆命题,否命题,逆否命题,假命题,假命题,假命题,假命题,(2)原命题,通过以上例子观察四种命题真假性的关系,1原命题为真,它的逆命题不一定为真。,2原命题为真,它的否命题不一定为真。,3原命题为真,它的逆否命题一定为真。,若一个命题p的逆命题是一个假命题,则下列判断一定正确的是()A.命题p是真命题B.命题p的否命题是假命题C.命题p的逆否命题是一个假命题D.命题p的否定是真命题,B,三个重要的逻辑联结词,非,或,且,且,p和q都要满足条件,一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作pq,读作“p且q”,一句话概括:全真为真,有假即假。,命题pq的真假判断方法:,假,假,真,假,或,p和q至少有一个满足条件,一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作pq,读作“p或q”.,命题pq的真假判断方法:,假,真,真,真,一句话概括:有真即真,全假为假.,非,下列两组命题间有什么关系?(1)35能被5整除;(2)35不能被5整除。(3)方程x2+x+1=0有实数根;(4)方程x2+x+1=0无实数根。,一般地,对一个命题p全盘否定,就得到一个新命题,记作p,读作“非p”或“p的否定”。p与p真假相反,命题(2)是命题(1)的否定,命题(4)是命题(3)的否定.,否命题VS命题的否定,原命题:如果明天下雨,我们就不上课。,如果明天不下雨,我们就上课。,如果明天下雨,我们就上课。,否命题:,命题的否定:,否命题是对条件和结论都否定;而命题的否定是对结论的否定。,全称存在量词型命题否命题与命题的否定,原命题:我们班都考上了美院。,我们班都没考上美院。,我们班有人没考上美院。,否命题:,命题的否定:,解:,充分条件与必要条件,p:x1,q:x0,p:下雨了,q:地面湿了,对于两个相对独立的命题p和q,如果我们以命题p作为已知条件,从p出发能够证明命题q是正确的,我们就说命题p是命题q的充分条件,而命题q是命题p的必要条件。,充分必要条件,p:两三角形三边相等,q:两三角形全等,对于两个相对独立的命题p和q,如果p能推导出q,同时q也能推导出p,我们把p叫做是q的充分必要条件,同理,q也是p的充分必要条件。用符号表示:,充分而不必要条件,对于两个相对独立的命题p和q,如果p能推导出q,但是q不能推导出p,我们把p叫做是q的充分而不必要条件,把q叫做是p的必要而不充分条件。,集合法首先建立与p,q相应的集合,即p:Ax|p(x);q:Bx|q(x)若AB,则p是q的充分条件;q是p的必要条件;若AB,则p是q的充分而不必要条件;q是p的必要而不充分条件;若AB,则p是q的充要条件;若AB,BA,则p是q的既不充分也不必要条件,(2014浙江卷)3已知a,b是实数,则“|ab|a|b|”是“ab0”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件,由|ab|a|b|可得:a与b同号,或者a=b=0所以|ab|a|b|时,ab0不一定成立,必要,而当ab0时,|ab|a|b|一定满足,不充分,综上:选B,要看清谁是条件,谁是结论。,弄清楚哪个证明哪个,学会找反例。,(08年浙江卷)3已知a,b都是实数,那么“a2b2”是“ab”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件,a2b2|a|b|所以无法证明ab同理,ab也无法证明a2b2综上:选D,(09年浙江卷)2已知a,b是实数,则“a0且b0”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业管理师考试试题及答案拓展
- 2025年统计师职业资格考试试卷及答案
- 2025年数字营销师考试试题及答案
- 2025年护理管理与实践考试试题及答案
- 2025年创意写作与文学分析考试卷及答案
- 知识产权收益分割与科技成果转化合作协议
- 金融机构间货币结算服务协议补充
- 离职人员保密协议与竞业限制合同(体育用品行业)
- 购物中心珠宝区品牌租赁与区域市场合作合同
- 城市级停车诱导系统与城市供电合同
- 人教版小学二年级下册数学 第6单元 第6课时 解决问题(2) 课件
- 2024年延安通和电业有限责任公司招聘考试真题
- 2025年中国矿山支护设备行业市场规模及投资前景预测分析报告
- 新形势下如何抓好“两个经常性”工作
- 监控立杆采购合同协议
- 贴改色膜合同协议
- 电工比武大赛试题及答案
- 邮政储蓄大堂引导员培训
- 社工小组协议书范例
- 2025-2030中国组合蒸汽烤箱行业市场发展趋势与前景展望战略研究报告
- 大学生建筑类创业项目
评论
0/150
提交评论