




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
眉山中学2018届高三上学期期中考试数学(理)试题一、选择题(本大题12个小题,每题5分,共60分)1已知集合,则= ( )A、 B、 C、 D、2已知为虚数单位,为复数的共轭复数,若,则()A、 B、 C、 D、3若,则=()A、 B、C、 D、4“”是“关于的方程有两个异号实数根”的()条件A、充分不必要 B、必要不充分C、充要 D、既不充分也不必要5如图,为矩形,其中,记线段以及的图像围成的区域(图中阴影部分)为,若向矩形内任意投一点,则点落在区域的概率为()A、B、 C、 D、6九章算术中,将底面是等腰直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的体积为()A、2 B、C、 D、7在中,点满足是的中点,若则()A、 B、 C、 D、8函数的图像可能是()9将函数的图像上各点的横坐标缩短为原来的倍,纵坐标不变,再将图像向右平移个单位,便得到函数的图像,则()A、关于直线对称 B、关于点对称C、关于直线对称 D、关于点对称10计算()A、 B、 C、 D、11已知函数是定义在上的偶函数,且当时,不等式成立,若,则的大小关系()A、 B、C、 D、12已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A、 B、C、D、二填空题(本大题4个小题,共20分,请把答案填在答题卷上)13已知,若在上投影为,则14函数为奇函数,则15已知,则16已知为常数,对任意,均有恒成立.下列说法:的周期为6;若为常数)的图像关于直线对称,则;若且,则必有已知定义在上的函数对任意均有成立,且当时,又函数为常数),若存在,使得成立,则的取值范围是其中说法正确的是(填写所有正确结论的编号)三解答题:(本大题共6个小题,共70分。解答应写出文字说明,证明过程或演算步骤)17(本小题共12分)已知是夹角为的单位向量,且.(1)若求实数的值;(2)求的最小值.18(本小题共12分)已知函数的部分图像如图所示.(1)求函数的解析式,并写出的单调减区间;(2)已知中角为锐角,且,求的最大值.19(本小题共12分)某校高三共有900名学生,高三模拟考之后,为了了解考生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:组号第一组第二组第三组第四组第五组第六组第七组第八组合计分组频数64222018a105c频率0.060.040.220.20b0.150.100.051(1)确定表中的值并估计该校本次考试的数学平均分.(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,令第七组被抽中的学生数为随机变量,求随机变量的分布列和数学期望.20(本小题共12分)在矩形中, ,是边的中点,如图(1),将沿直线翻折到的位置,使,如图(2).(1)求证:平面;(2)已知、分别是线段、上的点,且,平面,求直线与平面所成角的正弦值.21(本小题共12分)已知函数.(1)若在处的切线方程为,求的值;(2求的单调区间;(3若关于的不等式恒成立,求整数的最小值.22(本小题共10分)在平面直角坐标系中中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线的极坐标为(1)若直线与曲线相切,求的值;(2)求直线与曲线的交点坐标.参考答案一、选择题:二、填空题: 13、 14、 15、2 16、三、解答题。17、(1)令,则(2)=时,18、(1)为五点法作图的第二个点由的减区间为(2)且由余弦定理得当时最大值为19、解:(1)数学平均分为:750.06850.04950.221050.21150.181250.151350.11450.05110.(2)第六、七、八组共有30个样本,用分层抽样方法抽取6名学生,从第七组中抽取的样本数为随机变量的可能取值为0,1,2.,随机变量的分布列为:012所以20、解:()证明:连结BE,根据题意可以知道又因为,PB,平面PBE,所以平面PBE.又因为平面PBE,所以又因为在矩形ABCD中,所以又因为,CE,平面PCE, 所以平面PCE.()在图(2)中,以点A为原点,分别以AB,AE所在直线为x,y轴,以经过点A且垂直于平面ABCE的直线为z轴建立空间直角坐标系,如下图所示.根据题意可以知道,取CE的中点H,连结PH.由()可以知道平面平面ABCE. 又因为,所以又因为平面平面, 所以平面ABCE.可得又因为,所以因为,可得设,可得所以又因为,设平面ABP的法向量为,则令,可得, 所以因为平面PAB,所以,可得所以由()可以知道平面PCE,所以是平面PCE的一个法向量,可得所以直线QM与平面PCE所成角的正弦值为21、解:(1),函数的定义域是,由,=(2)时:,在递增;时:令;的增区间为减区间为(3)恒成立,可得恒成立,等价为在恒成立.令,只需,令,可得,设,在递减,设的根为,当,当时,在递增,在递减,即有,由,则,此时,即,即,且实数的最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3.3防疫小话剧(教学设计)2023-2024学年四年级上册信息技术川教版
- 2024秋五年级道德与法治上册 第一单元 面对成长中的新问题 1 自主选择课余生活说课稿 新人教版
- Unit 1 Friendship-Reading 说课稿英文版 2024-2025学年沪教版英语七年级上册
- 2025年2月医疗器械模考试题(含参考答案)
- 2025年全国起重指挥作业证考试题库(含答案)
- 2025年人教版七年级英语上册 Unit 1 You and Me 综合素质评价单元试卷(含答案)
- 2025共同租赁房屋合同范本汇编
- 2025租房合同模板示例
- 2025版权授权合同范本:手写字体制作协议
- 葡萄酒知识培训顺序课件
- 茶壶课件教学课件
- 孟良崮战役课件
- 2025-2026学年人教版(2024)初中数学七年级上册教学计划及进度表
- GB/T 3836.3-2021爆炸性环境第3部分:由增安型“e”保护的设备
- 制药工程导论课件
- 推拿手法精品课件
- deflt3d-教程delft网格生成d3d
- 安全心理学概述PPT通用课件
- 2022年妇科三基考试题库(导出版)
- 病媒生物防制技术指导手册(20130703)
- 钢筋加工机械技术状况常检查记录表
评论
0/150
提交评论