高等数学 函数的极限.ppt_第1页
高等数学 函数的极限.ppt_第2页
高等数学 函数的极限.ppt_第3页
高等数学 函数的极限.ppt_第4页
高等数学 函数的极限.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第一章,二、自变量趋于有限值时函数的极限,第四节,一、自变量趋于无穷大时函数的极限,本节内容:,函数的极限,自变量变化过程的六种形式:,定义1.设函数,充分大时有定义,在,则称常数,时的极限,几何解释:,记作,直线y=A为曲线,的水平渐近线.,A为函数,一、自变量趋于无穷大时函数的极限,的过程中,,对应的函数值,无限接近于一个数值A,,两种特殊情况:,设函数,充分大时,在,则称常数,时的极限,记作,A为函数,的过程中,,对应的函数值,无限接近于一个确定的数值A,,当,有定义,或,如果函数,当x在上述变化过程中没有极限,,的,不能无限接近于数值A,,即对应,就说函数,在该变化,过程中极限不存在。,当,直线y=A仍是曲线y=f(x)的渐近线.,几何意义:,例如,,都有水平渐近线,都有水平渐近线,又如,,一般地,若,则直线y=A为函数y=f(x)的,图形的水平渐近线.,例如,,不存在.,根据定义,,二、自变量趋于有限值时函数的极限,1.,时函数极限的定义,定义1.设函数,在点,的某去心邻域内有定义,则称常数A为函数,当,时的极限,或,记作,对应的函数值,无限接近于某一确定数值A,,且当x无限接近,时,即,时,,极限存在,函数局部有界,(P22定理1),这表明:,几何解释:,2.左极限与右极限,则称常数A为函数,当,时的右极限,记作,对应的函数值,无限接近于某一数值A,,时,即,时,(左),(小于),且当x大于而无限接近,(左),或,左极限与右极限统称为单侧极限.,定理1.,(充要条件),例1.给定函数,讨论,时,的极限是否存在.,解:利用定理1.,因为,显然,所以,不存在.,存在那么这极限唯一.,二、函数极限的性质,定理1(函数极限的唯一性),如果极限,定理2(函数极限的局部有界性),若,则函数f(x)在,的某一去心邻域(|x|充分大)有界.,有,当,时,有,即,定理3.(函数极限的局部保号性),若,且A0,则存在,(A0,则当|x|充分大时,,(A0,要找d0,使得0|x-x0|d时,有|f(x)-A|e.即A-ef(x)A+e.,哈哈,d找到了!,d,d,d符合要求!这样的d也能用,看来有一个d符合要求,就会有无穷多个,例2.证明,证:,欲使,取,则当,时,必有,因此,只要,例3.证明,证:,故,取,当,时,必有,因此,证明,的方法:,(1),取,(2)每一个扩大条件用,(3)取,(4)得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论