




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8章矩阵特征值问题计算,工程实践中有多种振动问题,如桥梁或建筑物的振动,机械机件、飞机机翼的振动,及一些稳定性分析和相关分析可转化为求矩阵特征值与特征向量的问题。,特征多项式,但高次多项式求根精度低,一般不作为求解方法.目前的方法是针对矩阵不同的特点给出不同的有效方法.,特征方程,特征方程的根称为特征值,相应的齐次方程组,的非零解x称为矩阵A的对应该特征值的特征向量,1.幂法和反幂法.一、幂法,求矩阵的按模最大的特征值与相应的特征向量。它是通过迭代产生向量序列,由此计算特征值和特征向量。,两种特殊情况,幂法小结,二、幂法的加速,因为幂法的收敛速度是线性的,而且依赖于比值,当比值接近于1时,幂法收敛很慢。幂法加速有多种,介绍两种。,三、反幂法,反幂法是计算矩阵按模最小的特征值及特征向量的方法,也是修正特征值、求相应特征向量的最有效的方法。,反幂法的一个应用,3.QR方法一、基本QR方法,60年代出现的QR算法是目前计算中小型矩阵的全部特征值与特征向量的最有效方法。实矩阵、非奇异。理论依据:任一非奇异实矩阵都可分解成一个正交矩阵Q和一个上三角矩阵R的乘积,而且当R的对角元符号取定时,分解是唯一的。,可证,在一定条件下,基本QR方法产生的矩阵序列A(k)“基本”收敛于一个上三角阵(或分块上三角阵)。即主对角线(或主对角线子块)及其以下元素均收敛,主对角线(或主对角线子块)以上元素可以不收敛。特别的,如果A是实对称阵,则A(k)“基本”收敛于对角矩阵。因为上三角阵的主对角元(或分块上三角阵中,主对角线子块的特征值)即为该矩阵的特征值,故当k充分大时,A(k)的主对角元(或主对角线子块的特征值)就可以作为A的特征值的近似。基本的QR方法的主要运算是对矩阵QR分解,分解的方法有多种。介绍一种Schmit正交化方法。,基本QR方法每次迭代都需作一次QR分解与矩阵乘法,计算量大,而且收敛速度慢。因此实际使用的QR方法是先用一系列相似变换将A化成拟上三角矩阵(称为上Hessenberg矩阵),然后对此矩阵用基本QR方法。因为拟上三角矩阵具有较多零元素,故可减少运算量。化A为相似的拟上三角阵的方法有多种。,二、豪斯豪尔德(Househol
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 策划企业年会活动策划方案
- 高空建筑拆卸方案设计图
- 建筑插画蓝色调色方案设计
- 短视频咨询顾问防骗方案
- 茶叶企业年度营销推广策划方案
- 退休仪式策划活动策划方案
- 清远水洗石施工方案报价
- 建筑方案设计图-万科
- 幼儿园招生咨询管理方案
- 书店亲子营销方案
- 人教版(2024新教材)七年级上册数学第一章《有理数》单元测试卷(含答案)
- 电子书 -小而美:持续盈利的经营法则
- 北京市部分区2023年中考语文一模试卷分类汇编:文学类文本阅读(解析)
- 数学史选讲解读课件
- 台球助教服务流程
- 中建水平定向钻施工方案
- 小古文文言文南辕北辙课件
- 《大学生职业生涯规划与就业指导》第一章
- 国际劳务合作和海外就业知识点及题库11470
- 经历是流经裙边的水
- 产品质量分析报告
评论
0/150
提交评论