




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.6何时获得最大利润,学情分析,教材分析,教法学法,教学过程,板书设计,说课内容,一、教材分析,一、教材分析,1、本节课在教材中的地位作用:,(1)章节地位:“何时获得最大利润”是北师大版九年级下册第二章二次函数第六节的内容,选自中学数学中数与代数这一大类。,(2)章节作用:在本章前,教材通过探索变量之间关系,探究一次函数和反比例函数,已经逐渐让学生建立了函数的基础知识,初步积累了研究函数性质的方法及用函数观点处理实际问题的经验这节课是学生在巩固二次函数的图象和性质的基础上,进一步让学生利用二次函数知识解决实际问题中(通常自变量取值受限制)的最大值。为学生在高中阶段进一步学习二次函数、二次方程、二次不等式等知识奠定基础。,一、教材分析,2、教学目标,(1).能为一些较简单的生活实际问题建立二次函数模型,并在此基础上,根据二次函数关系式和图象特点,确定二次函数的最值,从而解决实际问题。,(2).由具体到抽象,进一步理解二次函数图象的顶点坐标与函数最值的关系,并明确何时函数取得最大值,何时函数取得最小值。,(知识与技能),一、教材分析,2、教学目标,(过程与方法),(1)通过教师的提问,引导学生自主探讨,用观察法、归纳法、图像法,逐步分析二次函数图象的顶点坐标与函数最值的关系,让学生懂得利用二次函数知识解决实际问题。,(2)通过课堂的训练,让学生懂得求解二次函数的一般方法,再结合生活中例子,引导学生抽象出二次函数的数学模型,让学生体会函数的思想方法和数形结合的思想。,一、教材分析,2、教学目标,(情感与态度),(1)培养学生积极参与、合作交流的意识,让学生了解数学的价值,增进对数学的理解和学好数学的信心。,(2)通过学生体会数学与日常生活的紧密联系,激发学生学习数学的热情与兴趣。,一、教材分析,3、教学重点与难点,(一)教学重点,(二)教学难点,(1)探索最值问题(2)能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最值,发展解决问题的能力,从实际问题中抽象出二次函数模型,现在的中学生对一切充满好奇,对新鲜事物总想了解它,利用这个心理特点,引导学生自主探索生活中的二次函数的数学问题。而且,九年级学生已初步掌握函数的基础知识,积累了研究函数性质的方法及用函数观点解决实际问题的初步经验。但由于学生对二次函数的应用意识较淡薄,运用二次函数解决问题的能力需提高。,二、学情分析,三、教法与学法分析:,本节课采用学生独立思考探索与合作交流的学习方式,通过积极主动的学习活动,使学生成为数学学习的主体在学习的活动中培养学生分析推理、交流合作和解决问题的能力。,教师遵循“以学生为主体、教师为主导”的现代教育原则。首先是教师帮助学生温故二次函数的基本知识,再创设生活中的函数问题,然后教师提出问题,引导学生自主探究并明确目标。接着展现学生成果,教师总结一般方法,最后通过课堂训练以及课后练习,让学生真正掌握解决实际问题中的技巧,灵活运用二次函数,而不是死搬硬套。,四、教学过程设计,四、教学过程设计,1、提问温故,引出新知(3分钟),1.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是.,抛物线,直线x=h,(h,k),2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a0时,抛物线开口向,有最点,函数有最值,是;当a0时,抛物线开口向,有最点,函数有最值,是。,抛物线,上,低,小,下,高,大,简单的填空,通过学生小组抢答环节,温故上一节知识,既活跃气氛又能加深学生学习的兴趣,四、教学过程设计,2、创设情景,揭示课题(2分钟),某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?,创设销售中求最大利润的情景,揭示本节要探索的课题,某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?,3、师生互动,探究问题(5分钟),四、教学过程设计,(1)此题主要研究哪两个变量之间的关系,哪个是自变量,哪个是因变量?,(2)分析销售价与销售量之间的关系,销售量怎样表示(设销售单价为X元)?,(3)销售额又怎样表示呢(设销售单价为X元)?,(4)所获得利润怎样用表示(设销售单价为X元)?,(5)获利最多是什么意思?怎样转化为数学方法解决?,教师提问,学生思考,分组讨论,共同探究,所提出的问题由浅到难,逐步深入,帮助学生自主探索,明确最终的目标。,通过一步步的探索,明确目标求出销售单价与利润的关系,进而分析最大利润,4、分析问题,明确目标(5分钟),四、教学过程设计,自变量销售单价:13.5元下降1元后:(13.51)元下降2元后:(13.52)元下降3元后:(13.53)元,因变量销售量:500件下降1元后:(500+200*1)件下降2元后:(500+200*2)件下降3元后:(500+200*3)件,设销售单价为X元,所获利润为Y元,下降(13.5X)元后:X元下降(13.5X)元后:500+200*(13.5X)件,分析:销售量可以表示为_;销售额(销售总收入)可以表示为_;所获利润与销售单价之间的关系式可以表示:_,500+200*(13.5X),500+200*(13.5X)X,Y=500+200*(13.5X)(X2.5),由于学生情况参差不齐,故从具体到抽象,引导学生分析自变量与因变量之间的关系,5、解决问题,学法指导(5分钟),四、教学过程设计,所获利润与销售单价之间的关系式可以表示,Y=500+200*(13.5X)(X2.5),化简得:,方法二:配方得:y=-200 x2+3700 x-19250=-200(x-9.25)2+9112.5当x=9.25时,y的值最大,最大值为9112.5,通过学生的探索后,将实际问题转化为数学模型,利用学生所学知识,列出三种解题方法,拓宽学生思维。,方法三:作图法,通过观察图像,让学生体会实际问题中自变量通常有取值范围的限制,图象应是相应二次函数图象的一部分。,四、教学过程设计,5、解决问题,学法指导,注意:X在0到13.5之间,6、例题解剖,掌握方法(5分钟),四、教学过程设计,求一般二次函数最大(小)值的方法:,学生观察图象验证归纳出二次函数的最大(小)值就是该函数图象顶点的纵坐标值。,当a0时,观察y=ax2+bx+c(a0)的图象,求一般二次函数最大(小)值的方法,1、利用二次函数图象,找顶点,求最值。,2、利用配方法化为顶点式,求最值,3、直接代入顶点坐标公式,求最值,四、教学过程设计,6、例题解剖,掌握方法,例题的解剖,让学生掌握一般的求解方法,7、应用训练,深化认识(10分钟),四、教学过程设计,实践题目(与例题思路相似):某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?,解:设售价提高x元时,半月内获得的利润为y元.则y=(x+30-20)(40-20 x)=-20 x2+200 x+4000=-20(x-5)2+4500当x=5时,y最大=4500答:当售价提高5元时,半月内可获最大利润4500元,我来当老板,让学生模仿例题的求解,加深求解的数学方法,某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.,还记得本章一开始涉及的“种多少棵橙子树”的问题吗?,四、教学过程设计,7、应用训练,深化认识,如果增种x棵树,果园橙子的总产量为y个,那么y与x之间的关系式为:,y=(600-5x)(100+x)=-5x+100 x+60000,运用求二次函数最值的方法解决橙子最大产量问题,解决实际问题,(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系。(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?,提醒学生:y值不是最大值时所对应的x取值有两个,并且是关于对称轴对称的。,多媒体展示图象,引导学生直观分析,体会数形结合的思想方法,再次感受二次函数的最大值是图象顶点的纵坐标值。,四、教学过程设计,7、应用训练,深化认识,答案:(1)当x10时,橙子的总产量随增种橙子树的增加而减少。(2)6、7、8、9、10、11、12、13、14棵,8、总结归纳,加深理解(2分钟),四、教学过程设计,1、求二次函数最值的方法:(1)利用图象,找顶点,求最值;(2)利用配方化为顶点式,求最值;(3)利用顶点坐标公式,求最值。,2、利用二次函数知识解决实际问题中最值的步骤:,教师总结归纳,让学生明确求二次函数最值的方法与步骤,9、课后作业,巩固知识(2分钟),四、教学过程设计,1、某旅行社组团去外地旅游,30人起组团,每人单价800元。旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元。当一个旅行团的人数是多少时,旅行社可以获得最大营业额?,2、在某市开展的创卫活动中,某居民小区要在一块空地上修建一个矩形花园ABCD。花园的一边靠墙(墙长为15m),另三边用总长40m栅栏围成。若设花园的BC边长x(m)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现在进行时用法课件
- 2025年Python数据库应用培训试卷:实战演练与押题解析
- 2025年中学教师资格证考试教育知识与能力专项训练模拟试题版
- 2025年计算机技术与软件专业技术资格(水平)考试模拟试卷 程序设计专项训练
- 2025年高考物理电磁学难题解析冲刺试卷
- 2026届河北省石家庄市辛集中学化学高三上期末达标测试试题含解析
- 玩水安全知识培训内容课件
- 吉林省白城市洮南第十中学2026届化学高一上期末联考模拟试题含解析
- 研究生法律类题目及答案
- 个人信息保护协议格式
- 《体育游戏》课程标准
- 制程能力管理办法实用文档
- GB/T 451.3-2002纸和纸板厚度的测定
- GB/T 1303.2-2009电气用热固性树脂工业硬质层压板第2部分:试验方法
- 子痫前期子痫课件
- 部编版《县委书记的榜样-焦裕禄》课件1
- 基础教育改革与发展中的热点问题课件
- 流动式起重机械检验记录表
- 汽车保养基础知识优秀课件
- 青少年运动员 运动损伤的预防 课件
- 2022年十部经典的三级片电影
评论
0/150
提交评论