吉林大学数学建模培训.ppt_第1页
吉林大学数学建模培训.ppt_第2页
吉林大学数学建模培训.ppt_第3页
吉林大学数学建模培训.ppt_第4页
吉林大学数学建模培训.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。赛题来源于实际问题。比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。,这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。我国自1989年起陆续有高校参加美国大学生数学建模竞赛。1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一。,由于数学建模比赛的进行,刺激大学生来学习数学建模,因此关于数学建模的课程也逐步的开展起来.下面我们就先了解一下数学建模的发展历史.,数学建模是一门新兴的学科,20世纪70年代初诞生于英、美等现代工业国家。在短短几十年的历史瞬间辐射至全球大部分国家和地区。,80年代初,我国高等院校也陆续开设了数学建模课程,随着数学建模教学活动(包括数学建模课程、数学建模竞赛和数学(建模)试验课程等)的开展,这门课越来越得到重视,也深受广大学生的喜爱。,原因:一是由于新技术特别是计算机技术的飞速发展,大量的实际问题需要用计算机来解决,而计算机与实际问题之间需要数学模型来沟通。二是社会对大学生的要求越来越高,大学生毕业后要适应社会的需求,一到工作岗位就能创造价值。,2课程特点很强的实用性:教材的内容来自于实际。知识的广泛性:依赖于各方面的基础知识。内容的趣味性:有些问题就象是做游戏,引人入胜教学方式的多样性:教师讲授方式,小组讨论方式,学生报告方式,课堂教学方式,课外教学方式等。,3教学目的培养学生解决实际问题的综合能力。,1)“双向翻译”能力2)运用数学思想进行综合分析能力3)结合其他专业特别是应用计算机解决问题的能力4)观察力和想象力5)提高撰写科研论文的能力6)团结协作的精神,4教学参考书,1姜启源,谢金星,叶俊.数学模型(第三版).高等教育出版社.2沈继红等.数学建模.哈尔滨工程大学出版社.3周义仓,赫孝良.数学建模实验.西安交通大学出版社.4刘来福,曾文艺.数学模型与数学建模.北京师范大学出版社.5陈义华.数学模型.重庆大学出版社.,5应用的数学软件,目前我们比较常见的数学软件有:MatlabMathematicsMapleLingoLindoSpss,Sas,MATLAB科学计算,最优化求解,微分方程求解,统计分析,编程、符号运算、结果可视化SPSS,SAS统计分析LINDO/LINGO最优化求解MATHEMATICA符号运算、科学计算,最优化求解,微分方程求解,统计分析,编程,模型定义与分类,我们常见的模型玩具、照片、飞机、火箭模型直观模型直观模型:实物模型,主要追求外观上的逼真水箱中的舰艇、风洞中的飞机物理模型物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。地图、电路图、分子结构图符号模型还有思维模型,数学模型等.,模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。,模型定义,数学模型:1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。它是模型的一种。2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。,数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。,数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。,为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。,古希腊时期:“数理是宇宙的基本原理”文艺复兴时期:应用数学来阐明现象“进行尝试”微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。,费马(P.Fermal1601-1665)用变分法表示“光沿着所需时间最短的路径前进”牛顿(Newton1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律,什么是数学建模?数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。,我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。,为什么要建立数学模型?在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。,数学建模的步骤,模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。,模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。模型分析:对所得的结果进行数学上的分,模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用:应用方式因问题的性质和建模的目的而异。,一般来说数学建模过程可用如下框图来表明:,数学模型“航行问题”,甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少?用x表示船速,y表示水速,列出方程答:船速、水速分别为20千米/小时、5千米/小时,数学建模示例建模示例之一椅子的稳定性问题,问题:将四条腿一样长的正方形椅子放在不平的地面上,是否总能设法使它的四条腿同时着地,即放稳。,1假设1)地面为光滑曲面;2)相对地面的弯曲程度而言,椅子的腿是足够长的;3)只要有一点着地就视为已经着地,即将与地面的接触视为几何上的点接触;4)椅子的中心不动。,2建模分析:,表示A,C与地面距离之和,正方形ABCD绕O点旋转,表示B,D与地面距离之和,则由三点着地,有,不失一般性,设初始时:,用(对角线与x轴的夹角)表示椅子位置,3数学模型数学命题:.,假设:是的连续函数,且对任意,求证:至少存在,使得,4模型求解,证明:将椅子转动,对角线互换,由,可得,令,由的连续性,根据介值定理,在中至少存在一点,使得,即,又,所以,结论:能放稳。,连续函数的介值定理,a,b,o,x,y,思考题1:长方形的椅子会有同样的性质吗?,数学建模竞赛论文写作,摘要部分,应当包括的内容1.模型的数学归类(在数学上属于什么类型)2.建模的思想3.算法思想(模型求解思路)4.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验.)5.主要结果(数值结果,结论)(回答题目所问的全部“问题”),模型假设部分模型的假设主要有两个方面(1)根据题目中条件做出假设;(2)根据题目要求做出假设。注意点:关键性假设不能缺;假设要切合题意。,模型建立部分(1)基本模型首先要有数学模型(数学公式、方案等),基本模型要求完整,正确,简明;(2)简化模型要明确说明(简化思想,依据),简化后模型,尽可能完整给出;(3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。,模型建立部分(4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在1)建模中,模型本身,简化的好方法、好策略等;2)模型求解中;3)结果表示、分析、检验,模型检验;4)推广部分(5)在问题分析推导过程中,需要注意的问题:分析要中肯、确切;术语要专业、内行;原理、依据要求正确、明确;表述要求简明,关键步骤要列出。忌外行话,专业术语不明确,表述混乱,冗长。,模型求解部分(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。(2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称。(3)计算过程,中间结果可要可不要的,不要列出。(4)设法算出合理的数值结果。,结果分析、检验部分(模型检验及模型修正结果表示)(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;,模型评价部分优点突出,缺点不回避。改变原题要求,重新建模可在此做。进行推广或模型改进时,尽量使用已经用过的术语。,参考文献参考文献按正文中的引用次序列出,不要列没引用的文献和图书参考文献中书籍的表述方式为:编号作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:编号作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:编号作者,资源标题,网址,访问时间(年月日)。,检查答卷的主要三点把三关(1)模型的正确性、合理性、创新性(2)结果的正确性、合理性;(3)文字表述清晰,分析精辟,摘要精彩,一般说来,数学模型主要有下列几种类型:1.优化模型;2.微分方程模型;3.统计分析模型;4.插值拟合模型;5.计算机模拟和神经网络方法;,写答卷前的思考和工作规划答卷需要回答哪几个问题建模需要解决哪几个问题问题以怎样的方式回答结果以怎样的形式表示每个问题要列出哪些关键数据建模要计算哪些关键数据每个量,列出一组还是多组数要计算一组还是多组数,竞赛中必须做和注意的事情,写答卷前的思考和工作规划答卷需要回答哪几个问题建模需要解决哪几个问题问题以怎样的方式回答结果以怎样的形式表示每个问题要列出哪些关键数据建模要计算哪些关键数据每个量,列出一组还是多组数要计算一组还是多组数,答卷要求的原理准确科学性条理逻辑性简洁数学美创新研究、应用目标之一,人才培养需要实用建模,实际问题要求,建模理念应用意识要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。数学建模用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。创新意识建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。,注意数学模型、数学语言与实际问题及其背景的结合数学模型的建立是用来解决或者说明实际问题,因此特别要注意该竞赛并非要你解决一个数学问题,而是一个实际问题,所以必须要记住最终要将数学的语言或者结论转换为实际问题中的语言。建立模型过程中一定要讲清楚实际问题是怎么变成数学问题的,数学结论也应当放到实际背景问题中检验、说明。整个数学建模过程应当由三个阶段:建立模型实际问题数学问题;数学解答:数学问题数学解;模型检验:数学解实际问题的解决。(注意这三个部分同等重要,不要仅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论