充分统计量与完备统计量.ppt_第1页
充分统计量与完备统计量.ppt_第2页
充分统计量与完备统计量.ppt_第3页
充分统计量与完备统计量.ppt_第4页
充分统计量与完备统计量.ppt_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2充分统计量与完备统计量,一充分统计量在数理统计中,由样本来推断总体的前提是:样本包含了总体分布的信息。样本中包含的关于总体分布的信息可分为:,1、关于总体结构的信息,即反映总体分布的类型。如总体服从正态分布,则来自该总体的样本相互独立并均服从该正态分布,即样本包含了总体分布为正态分布的信息。,2、关于总体未知参数的信息,这是由于样本的分布中包含了总体分布中的未知参数。,为了推断总体分布的未知参数,需要把样本中关于未知参数的信息“提炼“出来,即构造合适的统计量样本的函数f(X1,X2,Xn),例为研究某个运动员的打靶命中率,我们对该运动员进行测试,观测其10次,发现除第三、六次未命中外,其余8次都命中。这样的观测结果包含了两种信息:,(1)打靶10次命中8次;(2)2次不命中分别出现在第3次和第6次打靶上。,第二种信息对了解该运动员的命中率是没有什么帮助的。,一般地,设我们对该运动员进行n次观测,得到x1,x2,xn,每个xj取值非0即1,命中1,不命中为0。,令T=x1+xn,T为观测到的命中次数。在这种场合仅仅记录使用T不会丢失任何与命中率有关的信息。,显然,一个“好”的统计量应该能够将样本中所包含的关于未知参数的信息全部提炼出来,而不没有任何有用信息损失,这就是英国著名统计学家Fisher于1922年提出的一个重要的概念-充分统计量。,样本X1,X2,Xn有一个样本分布F(x),这个分布包含了样本中一切有关的信息。统计量T=T(X1,X2,Xn)也有一个抽样分布FT(t)。,当我们期望用统计量T代替原始样本并且不损失任何有关的信息时,也就是期望抽样分布FT(t)像F(x)一样概括了有关的一切信息。,这即是说在统计量T的取值为t的情况下样本x的条件分布F(x|T=t)已不含的信息,这正是统计量具有充分性的含义。,二、因子分解定理,根据充分统计量的含义,在对总体未知参数进行推断时,应在可能的情况下尽量找出关于未知参数的充分统计量。,但从定义出发来判别一个统计量是否是充分统计量是很麻烦的。,为此,需要一个简单的判别准则。下面给出一个定理因子分解定理,运用这个定理,判别甚至寻找一个充分统计量有时会很方便。,例1.4根据因子分解定理证明例1.3。,证明样本的联合分布律为,若取,则有,若取,则,三、完备统计量,为了介绍完备统计量的概念,首先需要引入完备分布函数族的概念。,完备统计量的含义不如充分统计量那么明确,但由定义可见它有如下特征:,但反之不成立,,如果一个统计量既是充分的,又是完备的,则称为充分完备统计量。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论