




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.4平面与平面平行的性质,2.2直线、平面平行的判定及其性质,第二章点、直线、平面之间的位置关系,2.2.3直线与平面平行的性质,复习:线面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。,注意:,1、定理三个条件缺一不可。,2、简记:线线平行,则线面平行。,3、定理告诉我们:,要证线面平行,得在面内找一条线,使线线平行。,二:如何判断平面和平面平行?,答:有两种方法,一是用定义法,须判断两个平面没有公共点;二是用平面和平面平行的判定定理,须判断一个平面内有两条相交直线都和另一个平面平行.,思考:1、如果直线与平面平行,会有那些结果呢?2、如果两个平面平行,会有哪些结论呢?,新课讲解,问题1:命题“若直线a平行于平面,则直线a平行于平面内的一切直线”对吗?,本节课研究的内容,那么直线a会与平面内的哪些直线平行呢?,问题:在上面的论述中,平面内的直线b满足什么条件时,可以和直线a平行?,直线a与平面内任何直线都没有公共点,过直线a的某一个平面,若与平面相交,则这一条交线b就平行于直线a,证明:,=b,b在内。,结论:直线和平面平行的性质定理,如果一条直线和一个平面平行,则经过这条直线的任一平面与此平面的交线与该直线平行,注意:,1、定理三个条件缺一不可。,2、简记:线面平行,则线线平行。,巩固练习:,判断下列命题是否正确(其中a,b表示直线,表示平面)(1)若ab,b,则a.()(2)若a,b,则ab.()(3)若ab,b,则a.()(4)若a,b,则ab.()(5)如果a,b是两条直线,且ab,那么a平行于经过b的任何平面(),例:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?,定理应用,解:()如图,在平面内,过点作直线,使/,并分别交棱,于点,连接,则,就是应画的线,,显然都与平面相交,()因为棱平行于平面,平面与平面交于,所以,/由()知,/,所以/,因此,线/线,线/面,转化是立体几何的一种重要的思想方法。,注意:,探究新知,探究1.如果两个平面平行,那么一个平面内的直线与另一个平面有什么位置关系?,a,答:如果两个平面平行,那么一个平面内的直线与另一个平面平行.,借助长方体模型探究,结论:如果两个平面平行,那么两个平面内的直线要么是异面直线,要么是平行直线.,探究新知,探究2.如果两个平面平行,两个平面内的直线有什么位置关系?,探究3:当第三个平面和两个平行平面都相交时,两条交线有什么关系?为什么?,探究新知,答:两条交线平行.,下面我们来证明这个结论,如图,平面,满足,a,=b,求证:ab,证明:a,=ba,ba,b没有公共点,又因为a,b同在平面内,所以,ab,这个结论可做定理用,结论:当第三个平面和两个平行平面都相交时,两条交线平行,定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。,用符号语言表示性质定理:,a/b,想一想:这个定理的作用是什么?,答:可以由平面与平面平行得出直线与直线平行,例题分析,巩固新知,例1.求证:夹在两个平行平面间的平行线段相等.,讨论:解决这个问题的基本步骤是什么?,答:首先是画出图形,再结合图形将文字语言转化为符号语言,最后分析并书写出证明过程。,如图,/,AB/CD,且A,C,B,D.求证:AB=CD.,证明:因为AB/CD,所以过AB,CD可作平面,且平面与平面和分别相交于AC和BD.因为/,所以BD/AC.因此,四边形ABDC是平行四边形.所以AB=CD.,小结:一、直线和平面平行的性质定理,如果一条直线和一个平面平行,经过这条直线的任意平面和这个平面相交,那么这条直线和交线平行。,注意:,1、定理三个条件缺一不可。,2、简记:线面平行,则线线平行。,证明线面平行的转化思想:,线/线,线/面,面/面,由a/,通过构造过直线a的平面与平面相交于直线b,只要证得a/b即可。,二、两个平面平行具有如下的一些性质:如果两个平面平行,那么在一个平面内的所有直线都与另一个平面平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行.如果一条直线和两个平行平面中的一个相交,那么它也和另一个平面相交夹在两个平行平面间的所有平行线段相等,(5)两条直线被第三个平行平面所截,截得的对应线段成比例,练习巩固,1.如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交。,已知:如图,lA求证:l与相交。,证明:在上取一点B,过l和B作平面,由于与有公共点A,与有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年副高卫生职称-临床医学类-急诊医学(副高)代码:032历年参考题库典型考点含答案解析
- 2025年初级卫生职称-初级技师-放射医学技术(士)代码:104历年参考题库含答案解析
- 气道开放术课件
- 新证券行业面试题目及答案解析
- 2025年住院医师规培-青海-青海住院医师规培(内科)历年参考题库含答案解析
- 2025年住院医师规培-贵州-贵州住院医师规培(精神科)历年参考题库含答案解析
- 2025年住院医师规培-福建-福建住院医师规培(精神科)历年参考题库典型考点含答案解析
- 2025年住院医师规培-湖南-湖南住院医师规培(皮肤科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-湖北-湖北住院医师规培(骨科)历年参考题库典型考点含答案解析
- 城市交通发展战略面试题及答案
- 董事长的权利、职责、义务(5篇)
- 2024年安全员C证模拟考试1000题(附答案)
- 高中语文课程标准-(修改版)
- K31作业现场安全隐患排除(K3)
- 港口基础设施监测技术
- 人教版小学五年级数学下册《第五单元 图形的运动(三)》大单元整体教学设计2022课标
- 全国中学教师《初中数学》说课教学比赛-主题:《等腰三角形的性质》说课-一等奖课件
- 2024年工会财务知识竞赛试题及答案
- 26个英语字母描红练习(素材)-小学英语
- DL∕T 686-2018 电力网电能损耗计算导则
- 2023年河南省中考数学试卷及答案
评论
0/150
提交评论