




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.2解一元二次方程,第二十一章一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,21.2.4一元二次方程的根与系数的关系,新人教版九年级数学上册教学课件,学习目标,1.探索一元二次方程的根与系数的关系.(难点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点),导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式b2-4ac来判断一元二次方程根的情况?,对一元二次方程:ax2+bx+c=0(a0)b2-4ac0时,方程有两个不相等的实数根.b2-4ac=0时,方程有两个相等的实数根.b2-4ac0.方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1x2=6.,(2)2x2-3x-2=0.,解:这里a=2,b=-3,c=-2.=b2-4ac=(-3)242(-2)=250,方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=,x1x2=-1.,例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.,解:设方程的两个根分别是x1、x2,其中x1=2.所以:x1x2=2x2=即:x2=由于x1+x2=2+=得:k=7.答:方程的另一个根是,k=7.,变式:已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.,解:设方程的两个根分别是x1、x2,其中x1=1.所以:x1+x2=1+x2=6,即:x2=5.由于x1x2=15=得:m=15.答:方程的另一个根是5,m=15.,例3不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.,解:根据根与系数的关系可知:,设x1,x2为方程x2-4x+1=0的两个根,则:(1)x1+x2=,(2)x1x2=,(3),(4).,4,1,14,12,练一练,例4:设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且x12+x22=4,求k的值.,解:由方程有两个实数根,得=4(k-1)2-4k20即-8k+40.由根与系数的关系得x1+x2=2(k-1),x1x2=k2.x12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4.由x12+x22=4,得2k2-8k+4=4,解得k1=0,k2=4.经检验,k2=4不合题意,舍去.,总结常见的求值:,求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.,当堂练习,1.如果-1是方程2x2x+m=0的一个根,则另一个根是_,m=_.,2.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.,1,-2,-3,3.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.,解:将x=1代入方程中:3-19+m=0.解得m=16,设另一个根为x1,则:1x1=x1=,4.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.,解:(1)根据根与系数的关系所以(x1+1)(x2+1)=x1x2+(x1+x2)+1=解得:k=-7;,(2)因为k=-7,所以则:,5.设x1,x2是方程3x2+4x3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2),解:根据根与系数的关系得:(1)(x1+1)(x2+1)=x1x2+x1+x2+1=(2),6.当k为何值时,方程2x2-kx+1=0的两根差为1.,解:设方程两根分别为x1,x2(x1x2),则x1-x2=1,(x1-x2)2=(x1+x2)2-4x1x2=1,拓展提升,由根与系数的关系,得,7.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足x1-x2=1求m的值.,解:(1)方程有实数根,m的取值范围为m0,(2)方程有实数根x1,x2,(x1-x2)2=(x1+x2)2-4x1x2=1,解得m=8.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西会展管理师考试题库及答案
- 青岛网约车人证考试题库及答案
- 安徽省计算机vb考试试题及答案
- 植被恢复生态补偿机制-洞察与解读
- PM心功能评估方法-洞察与解读
- 2025年病历管理制度与病历书写规范考试题(带答案)
- 2025年低碳节能减排知识竞赛题库(含答案)
- 社区农田种植共享协议
- 战略合作协议及业务资源整合
- 2025年事业单位招聘考试综合类职业能力倾向测验真题模拟试卷(考前模拟训练备考)
- DB4201∕T 630.1-2020 中小学生研学旅行 第1部分:服务机构评定与服务规范
- 学生文明上网班会课件
- 叮当快药大健康生态圈战略解析
- 数学评比活动方案
- TCPUMT 034-2025 工业数字孪生 数字模型与数据集成交换要求
- 曹植的故事课件小学生
- 【艾瑞咨询】2024年中国健康管理行业研究报告494mb
- 施工作业安全管理制度
- 2025年房地产经纪人考试题及答案
- 4.3禁止生物武器
- 康复治疗技术专业实训室设计方案
评论
0/150
提交评论