毕业设计(论文)-110kv变电站电气部分设计.doc_第1页
毕业设计(论文)-110kv变电站电气部分设计.doc_第2页
毕业设计(论文)-110kv变电站电气部分设计.doc_第3页
毕业设计(论文)-110kv变电站电气部分设计.doc_第4页
毕业设计(论文)-110kv变电站电气部分设计.doc_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘 要随着国民经济的迅速发展,我国电力需求迅速增长,使得电网规模不断扩大、结构越来越复杂,而变电站对于电力的生产和分配起到了举足轻重的作用。变电站是电网建设和电网改造中非常重要技术环节。近年来,变电站技术处于高速发展的过程中,随着国内外气体绝缘金属封闭开关设备(GIS)系统和综合自动化技术的应用,变电站向着占地面积小、灵活性高、易于检修的趋势发展。本次设计为110kV 变电站电气部分初步设计,并绘制电气主接线图及其他图纸。该变电站设有两台主变压器,站内主接线分为110kV、10kV两个电压等级。本次设计中进行了电气主接线的设计、短路电流计算、变压器的选择、主要电气设备选择(包括断路器、隔离开关、电流互感器、电压互感器、母线等)、各电压等级配电装置设计。关键词:变电站 电气主接线 短路电流 AbstractWith the rapid development of the national economy, Chinas rapid growth in electricity demand. Make power grids structure have been expanding more and more complex substations for electric power production and distribution play an increasingly important role.Substation is very important technical aspect of a power grid construction and transformation of electrical networks. In recent years, the technology of substation is in the process of rapid development, with domestic and international gas-insulated metal-enclosed switching equipment systems and integrated automation technology(GIS) applications, the city substation in a small footprint, flexible, easy to overhaul the trend of development.We have to design primary power-system of 110kV substation and draw main electrical one-line diagram and others. There are two main transformer in the substation ,in which main electrical connection can be divided into two voltage grades: 110kV, 10kV.There is also a design for main electrical connection in this engineering, the calculation for short-circuit electric current, the selection of electrical device and calibration (including circuit breaker, isolator, current transformer, potential transformer, bus bar etc.) and the design for distribution installation per. voltage grade.Key words: substation main electrical connection short circuit currentsii目录1 前言11.1 选题的目的和意义11.2 国内外研究综述11.3 设计概述21.3.1 待建变电站的地位及作用21.3.2 变电站负荷情况21.3.3 环境给定条件32 电气主接线设计42.1 概述42.2 110kV电气主接线62.3 10kV电气主接线82.4 站用电接线103 变压器的选择123.1 概述123.2 变电站主变压器的选择123.2.1 主变压器相数的确定123.2.2 主变压器绕组数的确定133.2.3 主变压器台数的确定133.2.4 变电站主变压器容量的确定133.3 站用变压器台数、容量和型式的确定143.3.1 站用变压器台数的确定143.3.2 站用变压器容量的确定143.3.3 站用变压器型式的选择144 最大持续工作电流及短路电流的计算164.1 各回路最大持续工作电流164.2 短路电流计算164.2.1 短路电流计算目的、条件及一般规定164.2.2 短路电流计算185 主要电气设备选择205.1 选择电气设备的主要原则205.2 高压断路器的选择225.3 隔离开关的选择235.4 电流互感器的配置和选择245.5 电压互感器的配置和选择255.6 高压熔断器的选择265.7 各级电压母线的选择275.8 绝缘子和穿墙套管的选择285.9 主要电气设备选择结果296继电保护装置306.1 变压器的继电保护306.2 母线保护326.3 自动装置337 变电站的接地设计347.1 变电站接地装置的设计原则347.2 接地设计一般程序357.3 变电站的接地装置368 电气设备布置408.1 配电装置布置要求408.2 配电装置的分类418.3 配电装置布置419 总结42致 谢43参考文献44附录45附录 电气主接线图45附录 平面布置图461 前言1.1 选题的目的和意义电力工业是国民经济的重要部门之一,它是负责把自然界提供的能源转换为供人们直接使用的电能的产业。它既是现代工业、现代农业、现代科学技术和现代国防提供不可缺少的动力,又和广大人民群众的日常生活有着密切的关系。电力是工业的先行,电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。近年来随着我国国民经济的高速发展,人民生活用电的急剧增长,对于电力的需求大幅度增加,使得电网规模不断扩大、结构越来越复杂,人们对能源利用的认识越来越重视,而变电站对于电力的生产和分配起到了举足轻重的作用。变电站是电网建设和电网改造中非常重要的技术环节,在目前的电网建设中,尤其是在110kv变电站的建设中,土地、资金等资源浪费现象严重,存在重复建设、改造困难、工频电磁辐射、无线电干扰、噪声等环保问题以及电能质量差等的问题,这些已成为影响高压输变电工程建设成本和运行质量的重要因素,违背了我国可持续发展的战略,所以110kv变电站需要采用节约资源的设计方案,要克服通信干扰和噪声、既要保证电能质量和用电安全等问题,同时还要满足以后电网改造的方便性和资源再利用率高的要求。1.2 国内外研究综述近年来一些发达国家为减少电能在网路中的损耗,已经形成了比较完善的变电站设计理论,基本达到了建设节约型、集约型、高效型变电站的目标。国内的变电站也通过改善优化变电站结构,降低变电站的功率损耗,提高变电站的可靠性、灵活性、经济性。另外,变电站综合自动化系统取代传统的变电站二次系统,已成为当前电力系统发展的趋势。我国变电站自动化系统经过十几年的发展,虽然取得了不小的成绩,但目前还跟不上整个电力工业发展的步伐,真正实现自动化和无人值班的变电站并不多,其社会和经济效益不够显著,这说明我们的变电站自动化技术并不规范,市场发育也不成熟,这与研制、制造、规划、基建和运行等部门对变电站自动化的认识不同有很大的关系。总之,变电站综合自动化系统以其简单可靠、可扩展性强、兼容性好等特点逐步为国内用户所接受,并在一些大型变电站监控项目中获得成功的应用,变电站综合自动化技术应用的越来越成熟。认清和适应变电站自动化技术的发展趋势,采用先进的理论技术,摒弃落后和即将淘汰的技术,确定科学的模式和结构,选择质量优良和性能可靠的产品,无论对设备制造厂家还是对用户都是至关重要的,也关系到变电站技术未来的发展。因此,在学习借鉴国外先进技术的同时应结合我国的实际情况,全面系统地研究探讨符合国情的变电站自动化系统模式、结构、功能、通讯方式等,对我国变电站的发展有很重要的现实意义。1.3 设计概述1.3.1 待建变电站的地位及作用按照电力先行的原则,依据本地区远期负荷发展规划,决定在本地区建设一座中型110kV降压变电站。该变电站建成后,主要对本区用户供电为主,尤其对本地区大用户进行供电,改善和提高该地区的供电水平,同时和其他地区变电站联成环网,提高了本地供电的质量和可靠性。1.3.2 变电站负荷情况本变电站的电压等级为110/10kV。高压侧电压为110kv,有4回出线,低压侧电压为10kV,有线路24回。就地理位置来看,该变电站属于重要的中间变电站。出线方向:根据一般进出线规划和选址的交通、地形等条件,110kV布置在该变电站的上方(北侧),10kV布置在该站的下方(南侧),主变压器布置在110KV和10KV之间,布置方式如图1-1所示:北 110kV主变压器 主变压器 24回出线 10KV 图1-1 变电站出线布置图1.3.3 环境给定条件该地区自然条件:该变电站建在平原地区,交通方便,最热月月平均最高温度为40摄氏度,最冷月月平均最低温度为- 18摄氏度,年平均气温为12摄氏度,本地区无不良地质现象,土壤无污染,电阻率为7000.cm。该变电站预计总占地面积约为4.8亩,总建筑面积为356平方米。 2 电气主接线设计2.1 概述变电站电气主接线的设计是依据变电站的最高电压等级和变电站的性质,选择出一种与变电站在该地区电力系统中的地位和作用相适应的接线方式。变电站的电气主接线是电力系统接线的重要部分,它表明变电站内的变压器、各电压等级的线路、无功补偿设备以最优化的接线方式与电力系统连接,同时也表明在变电站内各种电气设备之间的连接方式。电气主接线的设计与变电站所在电力系统的作用及所采用的设备密切相关。随着电力系统的不断发展,新技术的采用和电气设备的可靠性不断提高,设计主接线的观念也应与时俱进、不断创新。现代电力系统是一个巨大的、严密的整体,主接线的好坏不仅影响到发电厂、变电站和电力系统本身,同时也影响到工农业生产和人民日常生活。因此,变电站主接线必须满足以下基本要求:(1)供电可靠性因事故被迫中断供电的机会越少,停电影响范围越小,停电时间越短,主接线可靠性程度就越高;供电可靠性的客观衡量标准是运行实践,衡量主接线运行可靠性的标志是:a.断路器检修时,能否不影响供电;b.线路、断路器或母线故障时,以及母线检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对重要用户的供电。因事故被迫中断供电面积少,停电影响范围越小,停电时间越短,主接线可靠性越高。衡量电能质量好坏的基本指标是电压、频率、供电连续性和可靠性,主接线在各种运行方式下应能满足要求。(2)供电的灵活性和方便性灵活性:应能灵活地投入(或切除)某些机组、变压器或线路,调配电源和负荷,不仅在正常的时候进行安全地供电,而且能满足系统在事故检修及特殊运行方式下的调度和要求,能灵活地进行运行方式的转换。可以容易地从初期过渡到其最终接线,使变电站在扩建过渡时,无论在一次和二次设备装置等所需的改造为最小。方便性:力求接线简单、清晰、明了,使运行人员操作、检修方便,以避免误操作,应能方便地停运断路器、母线及其断电保护设备,进行安全检修而不影响电网的正常运行和对用户的供电。(3)经济性投资小:a.主接线应简单、清晰,以节约断路器、隔离开关等一次设备的投资;b.要使控制、保护方式不过于复杂,以利于运行并节约二次设备和电缆投资;c.要适当限制短路电流,以便选择轻型及价格合理的电气设备。占地面积小:a.电气主接线设计要为配电装置的布置创造条件,以便节约用地和节省架构、导线、绝缘子及安装费用;b.在运输条件许可的地方采用三相变压器;c.电能损耗少、经济合理地选择主变压器的型式,容量和台数避免二次变压而增加电能损失。(4)具有扩建和发展性。变电站主接线应根据5到10年电力系统发展规划进行设计。从全局出发,统筹兼顾,根据本变电站在系统中的地位、进出线回路数、负荷情况、工程特点、自然环境条件等,确定合理的设计方案并具有扩建的方便性。主接线设计要留有余地,不仅要考虑最终接线的实现,同时还要兼顾到分期过渡接线的可能和施工的方便。应能容易地从初期过渡到最终接线,使在扩建过渡时一次和二次设备所需的改造范围最小。变电站电气主接线设计是依据变电站的最高电压等级和变电站的性质,选择出一种与变电站在系统中的地位和作用相适应的接线方式。一个变电站的电气主接线包括高压侧、低压侧以及变压器的接线,因各侧所接的系统情况不同、进出线回路数不同,所以其接线方式也不同。2.2 110kV电气主接线由于此变电站是为了某地区电力系统的发展和负荷增长而拟建的,那么其负荷为地区性负荷。电气主接线是根据电力系统和变电站具体条件确定的,它以电源和出线为主体,在进出线路多时(一般超过四回)为便于电能的汇集和分配,常设置母线作为中间环节,使接线简单清晰、运行方便,有利于安装和扩建。本变电站110kV 侧出线有4回,最好采用有母线连接方式,可选择双母线接线和单母线分段接线两种方案进行比较,如图2-1及图2-2所示:图2-1 双母线接线图2-2 单母线分段接线 对图2-1及图2-2所示方案、综合比较,见表2-1。表2-1主接线方案比较表方案 项目 方案方案技术供电可靠、运行方式较灵活;倒闸操作复杂,容易误操作。简单清晰、操作方便、易于发展;运行可靠、运行方式灵活、便于事故处理。经济占地大、设备多、投资大;用母线分段断路器兼作旁路断路器节省投资。设备少、投资小;母联断路器兼作旁路断路器节省投资。对于110kV侧来说,因为它要供给较多的一类、二类负荷,因此其要求有较高的可靠性。对比以上两种方案,从经济性、可靠性等多方面因素综合考虑,最佳设计方案为方案,单母线分段接线具有一定的可靠性和可扩展性,而且比双母线投资小。有的时候为了提高主接线的可靠性要增设旁路设施,设置旁路设施的目的是为了减少在断路器检修时对用户供电的影响。装设SF6断路器时,因断路器检修周期可长达510年甚至20年,可以不设旁路设施。本变电站110kV侧采用SF6断路器,不设旁路母线。2.3 10kV电气主接线610kV配电装置出线回路数目为6回及以上时,可采用单母线分段接线,而双母线接线一般用于引出线和电源较多,输送和穿越功率较大,要求可靠性和灵活性较高的场合。上述两种方案如图2-3及图2-4所示:图2-3单母线分段接线图2-4双母线接线对图2-3及图2-4所示方案、综合比较,见表2-2。表2-2 主接线方案比较方案项目方案方案技术 单清晰,易于扩建;调度灵活;保证对重要用户的供电;事故处理方便。供电可靠;调度灵活;扩建方便;便于试验;易误操作。经济 地少;设备少。设备多、配电装置复杂;投资和占地面大。经过综合比较方案在经济性上比方案好,且调度灵活也可保证供电的可靠性,所以选用方案。2.4 站用电接线一般站用电接线选用接线简单且投资小的接线方式,故提出单母线分段接线和单母线接线两种方案。上述两种方案如图2-5及图2-6所示。图2-5 单母线分段接线图2-6 单母线接线对图2-5及图2-6所示方案、综合比较,见表2-3。表2-3 主接线方案比较方案 项目方案单分方案单技术 会造成整个变电站停电;调度灵活;保证对重要用户的供电;任一断路器检修,该回路必须停止工作;扩建时需向两个方向均衡发展。简单清晰、操作方便、易于发展;可靠性、灵活性差。经济 地少;设备少。设备少、投资小。经比较两种方案经济性相差不大,所以选用可靠性和灵活性较高的方案。3 变压器的选择3.1 概述在各级电压等级的变电站中,变压器是变电站中的主要电气设备之一,其担任着向用户输送功率和两种电压等级之间交换功率的重要任务,同时兼顾电力系统负荷增长情况,所以变压器的选择必须根据电力系统510年发展规划进行综合分析合理选择,否则将造成经济和技术上的不合理。如果主变压器容量选择的过大或台数过多,不仅增加成本、扩大占地面积,而且会增加损耗,给运行和检修带来不便,设备也不能充分发挥效益;若容量选的过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。因此,确定合理的变压器的容量是变电站安全可靠供电及电网经济运行的保证。在生产上电力变压器有单相、三相、双绕组、三绕组、自耦以及分裂变压器等,在选择主变压器时,要根据该变电站的性质和设计变电站的自身特点,在满足可靠性的前提下,要充分考虑其经济性来选择合适的主变压器和站用变压器。3.2 变电站主变压器的选择3.2.1 主变压器相数的确定根据电气设计手册规定,当不受运输条件限制时,在330KV以下的电力系统均应选择三相变压器。而选择主变压器的相数时,应根据变电站在该地区电力系统中的作用以及设计变电站的实际情况来选择。单相变压器组,相对来讲投资大、占地多、运行损耗大,同时配电装置以及断电保护和二次接线的复杂化,也增加了维护及倒闸操作的工作量。本次设计的变电站,位于郊区开阔的平地,交通便利,不受运输的条件限制,故本次设计的变电站选用三相变压器。3.2.2 主变压器绕组数的确定对深入引进负荷中心、具有直接从高压降为低压供电条件的变电站,为简化电压等级或减少重复降压容量,可采用双绕组变压器。3.2.3 主变压器台数的确定选择主变台数确定的要求:(1)对大城市郊区的一次变电站,在高、低压侧已构成环网的情况下,变电站以装设两台主变压器为宜;(2)对地区性孤立的一次变电站或大型专用变电站,在设计时应虑装设三台主变压器的可能性。考虑到该变电站为一重要中间变电站,与系统联系紧密,故选用两台主变压器,并列运行且容量相等。3.2.4 变电站主变压器容量的确定主变压器容量确定的要求:(1)主变压器容量一般按变电站建成后510年的规划负荷选择,并适当考虑到远期1020年的负荷发展;(2)根据变电站所带负荷的性质和电网结构来确定主变压器的容量。对于有重要负荷的变电站,应考虑当一台主变压器停运时,其余变压器容量在设计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷:对一般性变电站停运时,其余变压器容量就能保证全部负荷的6070%。首先进行负荷分析。本系统中有110kv和10kv两个负荷等级,其最大负荷和功率因子分别为45MW,cos=0.9,和15MW,cos=0.85S总45/0.9+15/0.8567.647(MVA)S总=67.647MVA由于上述条件所限制,所以两台主变压器应各自承担33.824MVA,当一台停运时另一台则承担70%为47.353MVA。故选两台50MVA的主变压器就可满足负荷需求。故主变压器参数如表3-1所示:表3-1 主变压器参数型号额定电压比阻抗电压连接组别SZ-50000/11011081.25%/10.5KV10.5YN,d113.3 站用变压器台数、容量和型式的确定3.3.1站用变压器台数的确定对大中型变电站,通常装设两台站用变压器。因站用负荷较重要,考虑到该变电站具有两台主变压器,为提高站用电的可靠性和灵活性,所以装设两台站用变压器,分别接在10KV两段母线上,所用电采用380/220V,三相四线制中性点直接接地系统,单母线分段接线。3.3.2站用变压器容量的确定 站用变压器容量选择的要求:站用变压器的容量应满足经常的负荷需要和留有10%左右的裕度,以备加接临时负荷之用。考虑到两台站用变压器为采用暗备用方式,正常情况下为单台变压器运行。每台工作变压器在不满载状态下运行,当任意一台变压器因故障被断开后,其站用负荷则由完好的站用变压器承担。S站=96.075/(1-10%)=106KVA3.3.3 站用变压器型式的选择考虑到目前我国配电变压器生产厂家的情况和实现电力设备逐步向无油化过渡的目标,可选用干式变压器。故站用变参数如表3-2所示:表3-2 站用变参数型号电压组合接线组别空载损耗负载损耗空载电流阻抗电压高压高压分接范围低压SC-80/1010;6.3;65%0.4Y,yn00.482.61.344 最大持续工作电流及短路电流的计算4.1 各回路最大持续工作电流根据公式 式(4-1)式中: 所统计各电压侧负荷容量 各电压等级额定电压 最大持续工作电流 式(4-2) 式(4-3)则:10kV 110kV 4.2 短路电流计算4.2.1 短路电流计算目的、条件及一般规定在电力系统中运行的电气设备,在其运行中都必须考虑到发生的各种故障和不正常运行状态,最常见也是最危险的故障是各种形式的短路。短路是电力系统的严重故障,所谓短路是指一切不属于正常运行的相与相之间或相与地之间(对于大接地系统)发生金属性连接的情况。在三相系统中,可能发生的有对称的三相短路和不对称的两相短路、两相接地短路和单相接地短路。在各种类型的短路中,单相短路占多数,三相短路几率最小,但其后果最严重。因此,我们采取三相短路(对称短路)来计算短路电流,并检验电气设备的稳定性。(1)短路电流计算的目的在发电厂和变电站的设计中,短路电流计算是其中的一个重要环节,其计算的目的有以下几个方面:电气主接线的比较;选择导体和电器;在设计户外高压配电装置时,需要按短路条件校验软导线的相间和相对地的安全距离;在选择继电保护方式和进行整定计算时,需以各种短路电流为依据;接地装置的设计,也需要用短路电流。(2)短路电流计算条件基本假定:正常工作时,三相系统对称运行;所有电源的电动势相位相角相同;电力系统中的所有电源都在额定负荷下运行;短路发生在短路电流为最大值的瞬间;不考虑短路点的电弧阻抗和变压器的励磁电流;除去短路电流的衰减时间常数和低压网络的短路电流外,元件的电阻都略去不计;元件的计算参数均取其额定值,不考虑参数的误差和调整范围;输电线路的电容忽略不计。(3)短路电流计算的一般规定验算导体和电器动稳定、热稳定以及电器开断电流沿用的短路电流,应按本工程设计规划容量计算,并考虑远景的发展计划;选择导体和电器用的短路电流,在电气连接网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流的影响;选择导体和电器时,对不带电抗器回路的计算短路点应选择在正常接线方式时短路电流为最大的点;导体和电器的动稳定、热稳定以及电器的开断电流,一般按三相短路验算。4.2.2短路电流计算短路电流计算的目的是为了选择导体和电器,并进行有关的校验。按三相短路进行短路电流计算。可能发生最大短路电流的短路电流计算点有2个,即110KV母线短路(K1点),10KV电抗器母线短路(K2)。图4-1 系统接线图图4-2 正序阻抗 图4-3 零序阻抗短路电流计算结果如表4-1所示:表4-1 短路电流计算结果短路类型短路点编号短路点名称短路电流周期分量起始有效值I”短路电流周期分量0.2S有效值I0.2稳态短路电流有效值短路全电流最大有效值Ich短路电流冲击值ich短路容量S”(KA)(KA)(KA)(KA)(KA)(MVA)三相K1110KV20202030.2513984K210KV(分列)15.34515.34515.34523.32539.131279.064K210KV(并列)28.68928.68928.68943.60773.157521.738单相K1110KV19.89919.89919.89930.24750.7433963.4835 主要电气设备选择5.1 选择电气设备的主要原则由于电气设备和载流导体的用途及工作条件各异,因此它们的选择校验项目和方法也都完全不相同。但是,电气设备和载流导体在正常运行和短路时都必须可靠地工作,为此,它们的选择都有一些共同的原则。电气设备选择的一般原则为:(1)应满足正常运行检修短路和过电压情况下的要求并考虑远景发展;(2)应满足安装地点和当地环境条件校核;(3)应力求技术先进和经济合理;(4)同类设备应尽量减少品种;(5)与整个工程的建设标准协调一致;(6)选用的新产品均应具有可靠的试验数据并经正式签订合格的特殊情况下选用未经正式鉴定的新产品应经上级批准。技术条件:选择的高压电气设备,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。(1)长期工作条件电压 选用的电器允许最高工作电压Umax不得低于该回路的最高运行电压Ug,即UmaxUg。电流选用的电器额定电流Ie不得低于所在回路在各种可能运行方式下的持续工作电流Ig ,即IeIg。(2)短路稳定条件校验的一般原则:电器在选定后应按最大可能通过的短路电流进行动热稳定校验,校验的短路电流一般取最严重情况的短路电流;用熔断器保护的电器可不校验热稳定;短路的热稳定条件: 式(5-1) 式(5-2) 校验短路热稳定所用的计算时间t按下式计算: 式(5-3) 式中 继电保护装置动作时间内(S)断路的全分闸时间(S)动稳定校验 电动力稳定是导体和电器承受短时电流机械效应的能力,称动稳定。满足动稳定的条件是: 式(5-4) 式(5-5)式中 短路冲击电流幅值及其有效值 允许通过动稳定电流的幅值和有效值绝缘水平: 在工作电压的作用下,电器的内外绝缘应保证必要的可靠性,接口的绝缘水平应按电网中出现的各种过电压和保护设备相应的保护水平来确定。由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。高压电气设备没有明确的过载能力,所以在选择其额定电流时,应满足各种可能方式下回路持续工作电流的要求。(3)环境条件环境条件主要有温度、日照、风速、冰雪、温度、污秽、海拔、地震。由于设计时间仓促,所以在设计中主要考虑温度条件。按照规程上的规定,普通高压电器在环境最高温度为+40时,允许按照额定电流长期工作。当电器安装点的环境温度高于+40时,每增加1建议额定电流减少1.8%;当低于+40时,每降低1,建议额定电流增加0.5%,但总的增加值不得超过额定电流的20%。5.2 高压断路器的选择高压断路器在高压回路中起着控制和保护的作用,是高压电路中最重要的电器设备。本次在选择断路器,考虑了产品的系列化,既尽可能采用同一型号断路器,以便减少备用件的种类,方便设备的运行和检修。选择断路器时应满足以下基本要求:(1)在合闸运行时应为良导体,不但能长期通过负荷电流,即使通过短路电流,也应该具有足够的热稳定性和动稳定性;(2)在跳闸状态下应具有良好的绝缘性;(3)应有足够的断路能力和尽可能短的分断时间;(4)应有尽可能长的机械寿命和电气寿命,并要求结构简单、体积小、重量轻、安装维护方便。考虑到可靠性、经济性、运行维护的方便性,且由于SF6断路器已成为超高压和特高压唯一有发展前途的断路器,故在110KV侧采用六氟化硫断路器,其灭弧能力强、绝缘性能强、不燃烧、体积小、使用寿命和检修周期长而且使用可靠,不存在不安全问题。真空断路器由于其噪音小、不爆炸、体积小、无污染、可频繁操作、使用寿命和检修周期长、开距短、灭弧室小巧精确、所须的操作功小、动作快、燃弧时间短、且于开断电源大小无关、熄弧后触头间隙介质恢复速度快、开断近区故障性能好且适于开断容性负荷电流等特点,因而被大量使用于35KV及以下的电压等级中。所以,该变电站10KV侧采用真空断路器,又根据最大持续工作电流及短路电流得表5-1:表5-1 断路器参数电压等级型号额定电压额定电流 动稳定电流110kVLW25-110110KV 1250A31.5KA31.523(KA2s)83KA10kVZN-1210KV1000A25KA2523(KA2s)50kA5.3 隔离开关的选择隔离开关是高压开关设备的一种,它主要是用来隔离电源,进行倒闸操作的,还可以拉、合小电流电路。由于隔离开关没有灭弧装置及开断能力低,所以操作隔离开关时,必须遵守倒闸操作顺序,即送电时,首先合上母线侧隔离开关,其次合上线路侧隔离开关,最后合上断路器,停电则进行相反的操作。选择隔离开关时应满足以下基本要求:(1)隔离开关分开后应有明显的断开点,易于鉴别设备是否与电网隔开;(2)隔离开关断开点之间应有足够的绝缘距离,以保证过电压及相间闪络的情况下,不致引起击穿而危及工作人员的安全;(3)隔离开关应具有足够的热稳定性、动稳定性、机械强度和绝缘强度;(4)隔离开关在跳、合闸时的同期性要好,要有最佳的跳、合闸速度,以尽可能降低操作时的过电压;(5)隔离开关的结构要简单,动作要可靠;(6)带有接地刀闸的隔离开关,必须装设连锁机构,以保证隔离开关的正确操作。根据最大持续工作电流及短路电流选择适合的隔离开关,选择结果如下表:表5-2 隔离开关参数电压等级型号额定电压额定电流动稳定电流110kVGW4-110G110KV 1000A8010kVGN8-1010KV600A755.4 电流互感器的配置和选择(1)参数选择技术条件正常工作条件一次回路电流,一次回路电压,二次回路电流,二次回路电压,二次侧负荷,准确度等级;短路稳定性动稳定倍数,热稳定倍数;承受过电压能力绝缘水平,泄露比距。环境条件环境温度,最大风速,相对湿度。(2)型号选择35kV以下的屋内配电装置的电流互感器,根据安装使用条件及产品情况,采用瓷绝缘结构或树脂浇注绝缘结构。35kV以上配电装置一般采用油浸式绝缘结构的独立式电流互感器,在有条件时,如回路中有变压器套管和穿墙套管,应优先采用套管电流互感器,以节约投资、减少占地。110KV侧电流互感器的选择:根据设计手册35KV及以上配电装置一般采用油浸瓷箱式绝缘结构的独立式电流互感器常用L(C)系列。出线侧电流互感器采用户外式,用于表计测量和保护装置的需要准确度。当电流互感器用于测量时,其一次额定电流尽量选择的是回路中正常工作电流的1/3左右以保证测量仪表的最佳工作,并在过负荷时使仪表有适当的指标。根据: 式(5-6) 式(5-7)选择型号为LB7-110W型 10KV侧电流互感器可根据安装地点和最大长期工作电流选择型号为LZZBJ-10型环氧树脂浇注式电压互感器。表5-3 所选择的电流互感器电压等级型号额定电压额定电流热稳定电流动稳定电流备注110kVLB7-110W110KV 600A31.521(KA2s)80KA110KV侧10kVLZZBJ-1010KV200A2421(KA2s)60kA馈线10KVLZZBJ-1010KV25006321(KA2s)110主变压器进线5.5 电压互感器的配置和选择(1)参数选择技术条件正常工作条件一次回路电压,一次回路电流,二次负荷,准确度等级,机械负荷承受过电压能力绝缘水平,泄露比距。环境条件环境温度,最大风速,相对湿度,海拔高度。(2)型式选择620kV配电装置一般采用油浸绝缘结构,在高压开关柜中或在布置地位狭窄的地方,可采用树脂浇注绝缘结构。当需要零序电压时,一般采用三相五柱式电压互感器;35110kV配电装置一般采用油浸绝缘结构电磁式电压互感器。110kV侧电压互感器的选择根据电力工程电气设计手册规定,35-110KV配电装置一般采用油浸绝缘结构电磁式电压互感器,接在110KV及以上线路侧的电压互感器,当线路上装有载波通讯,应尽量与耦合电容器结合,统一选用电容式电压互感器。35KV及以上的户外装置,电压互感器都是单相的出线侧PT是当首端有电源时,为监视线路有无电压进行同期和设置重合闸。准确度为:电压互感器按一次回路电压、二次电压、安装地点二次负荷及准确等级要求进行选择。经比较选用 YDR-110 型电容式电压互感器。5-4 电压互感器的参数型号额定电压(V)二次绕组额定输出(VA)电 容 量载波耦 合电容一次绕组二次绕组剩余电压绕组0.5级1级高压电容中压电容YDR-110110000/100/100150VA300VA12.550105.6 高压熔断器的选择熔断器是最简单的保护装置。它用来保护电器免受过载和短路电流的损害。户内型高压熔断器在变电站中常用于保护电气设备、配电线路和配电变压器,而在电厂中多用于保护电压互感器。(1)额定电压选择。对于一般高压熔断器,其额定电压必须大于或等于电网的额定电压,另外,对于填充石英砂有限流作用的熔断器,则只能用于等于其额定电压的电网中,因为这种类型的熔断器能在电流达到最大值之前将电流截断,致使熔断器熔断时产生过电压。(2)额定电流选择。熔断器的额定电流选择,包括熔断器熔管的额定电流和熔体的额定电流的选择。熔管额定电流的选择。为了保证熔断器壳体不致损坏,高压熔断器的熔管额定电流,应大于或等于熔体的额定电流: 式(5-8)熔体额定电流选择。为了防止熔体在通过变压器励磁涌流和保护范围以外的短路及电动机自起动等冲击电流时误动作,保护35KV以下电力变压器的高压熔断器,其熔体的额定电流可按式(5-9)的条件选择: 式(5-9)式中 K 可靠系数,不计电动机自起动时,K =1.11.3,考虑电动机自起动时,K =1.52.0 电力变压器回路最大工作电流(3) 熔断器开断电流检验 式(5-10) 由于110KV侧电压互感器的电压等级很高,不宜装设熔断器,下面对10KV侧熔断器进行选择。由于电压互感器一次绕组电流很小,故熔断器只需按额定电压和开断电流进行选择,选择结果如下表:表5-5 熔断器参数安 装地 点型 号额定电压(KV)额定电流(A)最大开断电流(KA)断流容量(MVA)10KV电压互感器RN210/0.5100.58510005.7 各级电压母线的选择 选择配电装置中各级电压母线,主要应考虑如下内容: (1)选择母线的材料、结构和排列方式;(2)选择母线截面的大小;(3)检验母线短路时的热稳定和动稳定;(4)对35kV以上母线,应检验它在当地睛天气象条件下是否发生电晕;(5)对于重要母线和大电流母线,由于电力网母线振动,为避免共振,应校验母线自振频率。110kV母线一般采用软导体型式。从输送容量、耐振性能、导线强度、单公里重量、杆塔荷载、电晕条件、飞车作业、配套金具等9个方面进行了技术经济分析比较,结果表明,相同条件下LGJ-300/25输送容量较大、对杆塔拉力较小所以选择LGJ-300/25的钢芯铝绞线做为110KV侧的母线。本变电站10KV的最终回路较多,因此10KV母线应选硬导体为宜。故所选LGJ-150型钢芯铝绞线满足热稳定要求。所选电压母线型号如下表所示:表5-6 电压母线型号电压等级型号110KVLGJ-300/2510KVLGJ-1505.8 绝缘子和穿墙套管的选择在发电厂变电站的各级电压配电装置中,高压电器的连接、固定和绝缘,是由导电体、绝缘子和金具来实现的。所以,绝缘子必须有足够的绝缘强度和机械强度,耐热、耐潮湿。选择户外式绝缘子可以增长沿面放电距离,并能在雨天阻断水流,以保证绝缘子在恶劣的气候环境中可靠的工作。穿墙套管用于母线在屋内穿过墙壁和天花板以及从屋内向屋外穿墙时使用,635KV为瓷绝缘,60220KV为油浸纸绝缘电容式。本设计选择的穿墙套管如下:表5-7 绝缘套管型号电压等级(KV)型号额定电流(A)套管长度(mm)10CLD-1040006205.9 主要电气设备选择结果 该变电站主要电气设备选择结果如下表所示:表5-8 各主要电气设备选择结果一览表 电压等级电气设备110kV10kV断路器LW25-110ZN-12隔离开关GW4-110GGN8-10电流互感器LB7-110WLZZBJ-10电压互感器YDR-110TSJW-10绝缘子ZSW-110ZSW-10/500母线LGJ-300/25LGJ-150高压熔断器RN2-10/0.5穿墙套管CLD-10主变压器SZ-50000/110站用变压器SC-80/106继电保护装置6.1 变压器的继电保护变压器是电力系统中十分重要的供电设备,它的故障将对供电可靠性和系统的正常运行带来严重的影响,同时大容量的电力变压器也是十分贵重的元件,因此,必须根据变压器的容量和重要程度考虑装设性能良好且工作可靠的继电保护装置。变压器的故障可分为油箱内部故障和油箱外部故障,油箱内部故障包括相间短路、绕组的匝数短路和单相接地短路,外部故障包括引线及套管处会产生各相间短路和接地故障。变压器的不正常工作状态主要是由外部短路或过负荷引起的过电流油面降低和过励磁等。对于上述故障和不正当工作状态,根据DL400-91继电器保护和安全起动装置技术规程的规定,变压器应装设以下保护:(1)瓦斯保护:为了反应变压器油箱内部各种短路故障和油面降低,对0.8MVA及以上油浸式变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论