




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年四年级数学数阵图练习题1我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。我们先从一道典型的例题开始。例1把19这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。我们可以这样去想:因为19这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于453=15。也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。在19这九个数字中,三个不同的数相加等于15的有:951,942,861,852,843,762,753,654。因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。例如,第一行的后三个图,依次由第一个图顺时针旋转90,180,270得到。又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。所以,这八个图本质上是相同的,可以看作是一种填法。例1中的数阵图,我国古代称为“纵横图”、“九宫算”。一般地,将九个不同的数填在33(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。在例1中如果只要求任一横行及任一竖列的三数之和相等,而不要求两条对角线上的三数之和也相等,则解不唯一,这是因为在例1的解中,任意交换两行或两列的位置,不影响每行或每列的三数之和,故仍然是解。例2用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。分析与解:给出的九个数形成一个等差数列,对照例1,19也是一个等差数列。不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即1325=1721;余下各数就不难填写了(见右图)。与幻方相反的问题是反幻方。将九个数填入33(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方。例3将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻。分析与解:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线。经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解。因为第二种情况是螺旋形,故本题的解称为螺旋反幻方。例4将九个数填入左下图的九个空格中,使得任一行、任一列以及两条证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k。如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次。所以有九数之和+中心方格中的数3=4k,3k+中心方格中的数3=4k,注意:例4中对九个数及定数k都没有特殊要求。这个结论对求解33方格中的数阵问题很实用。在33的方格中,如果要求填入九个互不相同的质数,要求任一行、任一列以及两条对角线上的三个数之和都相等,那么这样填好的图称为三阶质数幻方。例5求任一列、任一行以及两条对角线上的三个数之和都等于267的三阶质数幻方。分析与解:由例4知中间方格中的数为267389。由于在两条对角线、中间一行及中间一列这四组数中,每组的三个数中都有89,所以每组的其余两数之和必为267-89178。两个质数之和为178的共有六组:5+17311167291494113747+13171+107。经试验,可得右图所示的三阶质数幻方。附送:2019年四年级数学数阵图练习题3数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题。例1把20以内的质数分别填入下图的一个中,使得图中用箭头连接起来的四个数之和都相等。分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等。20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5197171113,于是得到下图的填法。例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b处填3;进而推知c处填4,d处填3,e处填4,右下图为填好后的数阵图。例3将18填入左下图的内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个内。分析与解:因为中间的两个各自只与一个不相邻,而27中的任何一个数都与两个数相邻,所以这两个内只能填1和8。2只能填在与1不相邻的内,7只能填在与8不相邻的内。其余数的填法见右上图。例4在右图的六个内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20210。10分为三个质数之和只能是235,由此得到右图的填法。例5在右图所示立方体的八个顶点上标出19中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除。分析与解:设未被标出的数为a,则被标出的八个数之和为129-a45-a。由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为6k3(45-a),2k45-a。2k是偶数,45a也应是偶数,所以a必为奇数。若a1,则k22;若a3,则k21;若a5,则k20;若a7,则k19;若a9,则k18。因为k不能被a整除,所以只有a7,k19符合条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村公共环境治理方案(3篇)
- 石材装饰墙面处理方案(3篇)
- 二零二五年文化创意产业园区场地开放使用协议
- 二零二五年度电子设备搬迁与网络安全保障服务合同
- 二零二五年度保安服务合同变更及终止协议
- 二零二五年度房地产开发项目质量监理合同
- 二零二五版金融资产保全担保合同示范文本
- 二零二五年度环保型钣金展柜研发与制造合同
- 二零二五年度白灰产品销售合同范本模板
- 二零二五年度人工智能应用培训合同范例
- 学校食堂岗位职责及食品安全管理
- 党建能力测试题及答案
- 2025年教师招聘教育学心理学试题及答案汇编
- DB11T 2442-2025 学校食堂异物管控规范
- 企业防汛培训课件模板
- 2025年武汉市汉阳区社区干事岗位招聘考试笔试试题(含答案)
- 2025年小学英语(2022版)新课程标准考试测试卷及答案(共四套)
- 接警调度培训课件
- 药企批生产记录培训
- 2025年高考语文全国卷试题评析-教育部教育考试院
- 吉林:用水定额(DB22-T 389-2019)
评论
0/150
提交评论