外文翻译-某型涡轮增压柴油发动机动力性分析.doc_第1页
外文翻译-某型涡轮增压柴油发动机动力性分析.doc_第2页
外文翻译-某型涡轮增压柴油发动机动力性分析.doc_第3页
外文翻译-某型涡轮增压柴油发动机动力性分析.doc_第4页
外文翻译-某型涡轮增压柴油发动机动力性分析.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

密 级分类号编 号成 绩本科生毕业设计 (论文)外 文 翻 译原 文 标 题Vehicle dynamics control architecture 译 文 标 题汽车动态控制结构作者所在系别机电工程学院作者所在专业车辆工程作者所在班级B13141作 者 姓 名戴维作 者 学 号201322088指导教师姓名臧继嵩指导教师职称实验师完 成 时 间2017年3月北华航天工业学院教务处制译文标题汽车动态控制结构原文标题Vehicle dynamics control architecture作 者Rochester译 名罗彻斯特国 籍美国原文出处GM Global Technology Operations, Inc. (Detroit, MI, US)摘要:车辆包括多个子系统和用于在其上实现正常控制的相应控制器。 车辆还包括车辆动态控制器,用于为子系统控制提供高优先级子系统命令,以实现车辆动态增强。 车辆动态控制器包括多个可独立分解和可重新配置的软件组件或层和可访问的层间总线结构。关键词:汽车动力 改进 控制器技术领域本发明总体上涉及车辆动力学控制。 更具体地,本发明涉及车辆动态控制系统架构。背景技术车辆稳定性控制已经从基于制动和牵引力控制(制动和动力系转矩管理)技术的第一代系统发展到包括制动器,动力系,转向和悬架阻尼子系统的独立和协调控制的更近的系统。通常,分布式控制模块用于与相应的致动器直接接口以实现期望的子系统控制。这种子系统控制的协调和权限可以通过监督控制来处理。除了车辆稳定性控制的复杂性和复杂性之外,受影响的车辆子系统具有高度集成和重叠,最显着的是在用于实现期望的车辆稳定性的各种子系统控制中利用的车辆级别参数的共性增强。车辆级的参数共性表明处理器利用率,通信带宽消耗,多平台应用和软件灵活性的效率和其他机会。这在通过与相应子系统控制(例如转向,制动,动力系扭矩,悬架阻尼)相关联的各种分布式控制模块来影响稳定性增强的车辆稳定性控制系统中甚至可能更加尖锐,其中协调和权限通过中央监督控制。软件组件的系统重用促进了低成本,快速上市和广泛可用的车辆系统。显着的优点直接来自应用程序开发成本,时间,验证,可维护性和灵活性等优势,这些常见软件资产提供。因此,期望车辆动态系统的特征在于高度的软件组件可用性和访问以实现和促进重用,可维护性,公共验证和开发,成本和时间节省以及多平台利用。发明内容本发明是一种新颖的车辆动态控制系统,包括至少一个车辆子系统,其通常根据由至少一个相应子系统控制器确定的子系统控制来控制。 该系统还包括车辆动态控制器,用于提供高优先级子系统命令以由至少一个相应子系统控制器实现。 车辆动态控制器还包括多层软件组件和层间总线,由此分解和重组车辆动态控制器的所选多层软件组件,而不影响所述车辆动态特性的多层软件组件中的其他多个软件组件 控制器和对车辆动态控制器的层间总线中所选择的层的访问。本发明的这些和其它优点和特征将从以下描述,权利要求和附图中变得显而易见。具体实施方式在图1中示意性地示出了车辆动态控制系统12。与各种车辆子系统相关联的多个致动器13对车辆11施加各种力以增强稳定性并且响应于诸如方向盘角度,车辆速度等的输入维持预期路径。车轮速度和车辆横摆率。例如,在主动前转向(AFS)系统中,前车轮的转向角受到命令实现期望的车辆稳定性增强的转向致动器系统的影响。在制动/动力系车辆稳定性增强(VSE)系统中,单独的车轮制动和动力系扭矩可以通过各种技术(例如,火花正时,气缸停用,发动机加燃料等)通过调制的液压制动压力和发动机输出扭矩控制来影响。等等。)。在半主动悬架系统中,悬架阻尼特性可以以实现期望的车辆稳定性增强的方式改变。其它系统,包括但不限于其中弹簧刚度可改变的主动悬架,以及后轮转向角可改变的主动轮转向,同样在本发明的应用范围内。每个这样的车辆子系统具有与其相关联的一个或多个控制模块14.这种子系统可以以分布式控制方式操作,其中与特定子系统相关联的每个控制单元通过命令控制子系统致动器13.除了在被动的贡献意义之外,这样的正常控制功能通常不与车辆动力学控制相关。例如,动力系控制器负责响应于操作者需求而实现一定量的输出扭矩,并且负责在多速比自动变速器的速比换档期间进行扭矩管理。动力系控制器通常还执行可能涉及火花正时,气缸停用,发动机加燃料等的排放临界和燃料经济性关键功能。转向控制器负责可变辅助 - 在低速和停车操纵期间减小转向力,并逐渐增加转向力随着车速的增加。四轮转向控制还负责在低车速下在与前轮相反的方向上控制后轮的转向角,并且在较高车速下在相同方向上控制后轮的转向角。悬架控制器同样负责根据车辆速度来调整车辆的行驶特性,主要是通过在低车辆速度下减小阻尼来为操作者提供舒适感,并且通过在较高车辆速度下增加阻尼来改善高速公路感觉。车辆11,子系统致动器13和子系统控制器14都向车辆动态控制器10提供各种输入信号16,用于在车辆动态控制程序中使用。车辆输入可以包括例如偏航速率,横向加速度和车辆速度。致动器输入可以包括例如阻尼器位置和行车轮角度。子系统控制器输入可以包括例如单独制动转角致动超控,制动系统混合项,冲击阻尼值超驰,AFS转向致动器超控或额外转向角。车辆11,子系统致动器13和子系统控制器14输入信号优选地通过控制器局域网(CAN)总线提供,但是可以采取离散传感器信号输入,串行通信线路等的形式。车辆动态控制器10转向提供高优先级控制命令18,用于超越,修改或适应子系统控制器14的正常控制,以便实现增强各个子系统致动器13的控制的车辆动态性。车辆动态控制器10包括适于实现促进软件组件的再使用,应用开发时间和成本降低,可维护性和多个车辆平台适配等的期望目标的各种结构化处理层。重要的是,本发明不仅提高了大规模控制应用软件组件的可重用性,而且提高了车辆接口,信号调节,内部总线结构和输出处理的可重用性。从图1中的车辆动力学控制器10的左侧开始,在图1中,示出了信号处理层15与来自车辆11,子系统致动器13和子系统控制器14的各种输入信号16接口连接。信号处理层15经由内部传感器总线22通信耦合到过程输入层17。输入层17还经由内部车辆动态性总线26通信耦合到车辆动力学/驾驶员意图层19,这两者在下文中描述。过程输入层17又经由内部输入总线24与车辆动力学/驾驶员意图层19通信耦合。车辆动力学/驾驶员意图层19还经由内部传感器总线22与信号处理层15通信耦合。车辆动力学/驾驶员意图层19又经由内部车辆动态性总线26耦合到控制系统层21.控制系统层21还经由内部传感器总线22通信耦合到信号处理层15并经由内部输入总线24处理输入层17。系统层21又通过内部控制总线28与处理输出层23通信耦合。处理输出层23还通过内部输入总线24与处理输入层17通信耦合。处理输出层23进而通信耦合到命令处理层25.最后,命令处理层25又经由CAN总线20通信耦合到各个子系统控制器14,以提供先前描述的控制命令18。从车辆动态控制器10的先前描述可以理解,所描述的层提供软件划分,包括在车辆接口,信号调节,内部总线结构和输出处理,以提供上述优点。层独立性允许用于开发和维护的一个或多个层或软件组件的期望的模块化和分解/重组,而对任何剩余的层或软件组件没有实质影响。层间总线提供对在开发(例如用于调试和仪器)中有用的不同级别的输入和输出信号以及在车辆动态控制器内部和外部的不同程度的改进数据的精确利用的期望访问。图1的车辆动力学控制器的总体级分解的可用性10以及如此构造的经由内部总线的结构化层间访问实现和促进软件组件重用,应用开发时间和成本降低,可维护性和多个车辆平台适配的目标。关于参考图1描述的车辆动态控制器10的各个层和层间通信的附加细节。现在将参考其余的附图来阐述图1。 2-6。开始。如图2所示,信号处理层15包括功能块31,用于从包括来自车辆11,致动器13和子系统控制器14的传感器或派生物读取基于CAN的信号。块31通过内部接收通信耦合到CAN输入转换功能块33 CAN总线32.块31和33读取信号,通过适当的电平诊断确保准确性和鲁棒性,并将CAN信号转换为工程单位原始输入以供后续层使用。块33通信耦合到内部传感器总线22,用于将输入与过程输入层17,车辆动力学/驾驶员意图层19和控制系统层21通信。图。图3更详细地示出了过程输入层17,包括用于过滤内部传感器总线22上的输入的功能块35,从而将输入过滤集中到公共软件组件。从块35,经由内部滤波的输入总线34,将滤波的输入提供给功能块37,用于调整输入,例如,重心调整以用于偏移运动传感器放置的感测的运动。从框37,通过内部调整的输入总线36,将调整的输入提供给功能块39,用于使输入居中 - 例如,去除传感器偏置。还对车辆动态性总线26上提供的数据执行定心功能。从框39,通过内部中心输入总线38,将中心输入提供给功能块41,用于仲裁多个(即冗余)相关输入,提供例如有效性确定,健全性检查诸如输入量值和最终确定来自多个相关输入的单个有效输入的事物。还对在车辆动力总线26上提供的数据执行仲裁功能。功能块43被提供用于从内部传感器总线22上的输入导出附加输入,例如一阶导数操作以从车辆横摆率输入提供车辆偏航加速度。从功能块43和41,这样的导出和仲裁输入分别是通信耦合到内部输入总线24,用于将输入与车辆动态/驱动意图层19,控制系统层21和过程输出层23通信。图4更详细地示出了包括多个示例性功能块的车辆动力学/驾驶员意图层19,用于确定车辆动力学控制器10的控制系统层21在确定用于实现的期望性和执行命令时所需的各种参数,主动车辆动力学控制。所示的功能块当然是各种参数确定的非穷尽性示例,包括:建模函数;以及计算,检测,估计,预测或以其它方式确定的速率,限制,能力,条件,数量,误差和状态。如图1中最佳地示出。如图1所示,车辆动力学/驾驶员意图层19分别从内部输入总线24和内部传感器总线22接收输入和信号,并且经由内部车辆动态性总线26向控制系统层21提供参数输入。图5更详细地示出了包括车辆动态控制器10的控制系统层21的双层监控控制方面的控制系统层21.车辆运动监控器45经由内部传感器总线22从信号处理层15接收原始输入,通过内部输入总线24来自过程输入层17的输入,以及经由内部车辆动态总线26来自车辆动力学/驾驶员意图层19的参数输入。车辆运动监视器45通信耦合到制动和推进监视器47,转向监视器49和悬架管理器并且监督各种车辆动态控制子系统监控器47,49和51的协调。这些车辆动态控制子系统监控器中的每一个还经由内部传感器总线22从信号处理层15接收原始输入,导出和仲裁的输入从过程输入层17经由内部输入总线24,以及来自车辆动力学/驾驶员意图层19的参数输入。车辆动态控制子系统监视器47,49和51由车辆运动监视器45并且经由内部控制总线28向过程输出层23提供相应的高优先级控制命令输入,最终用于超控,修改或适配子系统控制器14的正常控制,以实现车辆动态增强各种子系统控制的控制,系统致动器13。过程输出层23通过内部控制总线28接收来自控制系统层21的高优先级控制命令输入以及通过内部输入总线24从过程输入层17导出和仲裁的输入。过程输出层23提供命令输入以及导出和仲裁的输入命令处理层25.另外,在开发期间,出于仪器目的,可以经由输出总线30访问命令输入以及导出和仲裁的输入,包括软件调试和实验目的。图。图6更详细地示出了命令处理层25,包括车辆动态控制器10的命令转换和传输功能。命令处理层25包括功能块53,用于将输入的工程单元转换成适合于通过CAN总线传输的CAN信号。另外,用于诊断目的的校验和和滚动计数在命令处理层25的功能块53中计算。块53经由内部传输CAN总线40被通信耦合到传输CAN驱动器功能块55.块55管理高优先级用于超控,修改或适应子系统控制器14的正常控制的控制命令18,以便实现增强各个子系统致动器13的控制的车辆动力学。已经关于某些示例性实施例描述了本发明。然而,应当理解,在不脱离如所附权利要求所限定的本发明的范围的情况下,本发明的各种修改和替代实施方式。外文文献1CD Carter,RD Mstthews.Design of Formula SAE Race Car:VehicleDynamics andPerformance.Sae Intemational Off-highway,1982附录:Vehicle dynamics control architectureAbstract: A vehicle includes a plurality of sub-systems and corresponding controllers for effecting normal control thereover. The vehicle further includes a vehicle dynamics controller for providing high-priority sub-system commands for sub-system control to effect vehicle dynamics enhancements. The vehicle dynamics controller includes a plurality of independently decomposable and recomposable software components or layers and accessible inter-layer bus structure.Keywords: vehicle dynamics enhancements controllersTECHNICAL FIELDThe present invention is generally related to vehicle dynamics control. More particularly, the invention relates to the vehicle dynamics control system architecture.BACKGROUND OF THE INVENTIONVehicle stability controls have progressed from first generation systems based upon braking and traction control (braking and powertrain torque management) technologies to more recent systems including independent and coordinated controls of brake, powertrain, steering and suspension damping sub-systems. Typically, distributed control modules are employed to directly interface with respective actuators to effect the desired sub-system controls. Coordination and authority of such sub-system control may be handled by way of a supervisory control.Apart from the complexity and sophistication of vehicle stability controls, there is a high degree of integration and overlap of the affected vehicle sub-systems, most notably in the commonality of vehicle level parameters utilized across various sub-system controls for effecting the desired vehicle stability enhancements. Parametric commonality at the vehicle level suggests efficiency and other opportunities in processor utilization, communication bandwidth consumption, multi-platform application and flexibility of software. This may be even more acute in vehicle stability control systems which effect stability enhancement through a variety of distributed control modules associated with respective sub-system control (e.g. steering, braking, powertrain torque, suspension damping) wherein coordination and authority are handled through a central supervisory control.Systematic reuse of software components promotes low-cost, quick-to-market and widely available vehicle systems. Significant benefits result directly from the application development cost, time, validation, maintainability and flexibility advantages afforded by such common software assets.Therefore, it is desirable that a vehicle dynamics system be characterized by a high degree of software component availability and access to enable and promote reuse, maintainability, common validation and development, cost and time savings, and multi-platform utilization.SUMMARY OF THE INVENTIONThe present invention is a novel vehicle dynamics control system including at least one vehicle sub-system normally controlled in accordance with sub-system controls determined by at least one respective sub-system controller. The system further includes a vehicle dynamics controller for providing high priority sub-system commands for implementation by the at least one respective sub-system controller. The vehicle dynamics controller further includes multi-layer software components and inter-layer busses whereby decomposition and recomposition of selected ones of said multi-layer software components of the vehicle dynamics controller without affecting other ones of the multi-layer software components of said vehicle dynamics controller and access to selected ones of the inter-layer busses of the vehicle dynamics controller are enabled thereby.These and other advantages and features of the invention will become apparent from the following description, claims and figures.DESCRIPTION OF THE PREFERRED EMBODIMENTA vehicle dynamics control system 12 is schematically illustrated in FIG. 1 and includes vehicle 11 and vehicle dynamics controller 10. A plurality of actuators 13 associated with various vehicle sub-systems effect various forces upon vehicle 11 to enhance stability and maintain an intended path in response to such inputs as steering wheel angle, vehicle speed, wheel speed and vehicle yaw rate among others. For example, in an active front steering (AFS) system, the steering angle of the front vehicle wheels is affected by way of a steering actuator system that is commanded to effect the desired vehicle stability enhancement. In a braking/powertrain vehicle stability enhancement (VSE) system, individual wheel braking and powertrain torque may be affected by way of modulated hydraulic brake pressure and engine output torque control through a variety of techniques (e.g. spark timing, cylinder deactivation, engine fueling, etc.). In a semi-active suspension system, suspension damping characteristics may be altered in a manner to effect a desired vehicle stability enhancement. Other systems, including but not limited to active suspensions wherein spring rates are alterable, and active rear steering where rear wheel steering angle is alterable, are equally within the scope of application of the present invention.Each such vehicle sub-system has associated therewith one or more control modules 14. Such sub-systems are operable in a distributed control fashion wherein each control unit associated with a particular sub-system is responsible for normal control functions thereof by commanding the control of the sub-system actuators 13. Such normal control functions generally are not related to vehicle dynamics control other than in a passive, contributory sense. For example, a powertrain controller is responsible for effecting an amount of output torque in response to an operator demand and for torque management during ratio shifting of a multi-speed ratio automatic transmission. The powertrain controller also normally performs emission critical and fuel economy critical functions which may implicate spark timing, cylinder deactivation, engine fueling, etc. A steering controller is responsible for variable assistreducing steering effort during low speed and parking maneuvers and progressively increasing steering effort as vehicle speed increases. A four wheel steering control is also responsible for controlling the turn angle of the rear wheels in the opposite direction from the front wheels at low vehicle speeds and in the same direction at higher vehicle speeds. A suspension controller likewise is responsible for tuning the ride characteristics of the vehicle in accordance with vehicle speed, predominantly for operator comfort through reduced damping at low vehicle speeds and for improved highway feel through increased damping at higher vehicle speeds.The vehicle 11, sub-system actuators 13 and sub-system controllers 14 all provide various input signals 16 to the vehicle dynamics controller 10 for use in vehicle dynamics control routines. Vehicle inputs may include, for example, yaw rate, lateral acceleration and vehicle speed. Actuator inputs may include, for example, damper position and road wheel angle. Sub-system controller inputs may include, for example, individual brake corner actuation override, brake system blending terms, shock damping value override, AFS steering actuator override or extra steering angle. Vehicle 11, sub-system actuators 13 and sub-system controllers 14 input signals are preferably provided over a controller area network (CAN) bus but may take the form of discrete sensor signal inputs, serial communication lines, etc. Vehicle dynamics controller 10 in turn provides high priority control commands 18 for overriding, modifying or adapting the normal control of the sub-system controllers 14 in the interest of implementing vehicle dynamics enhancing control of the various sub-system actuators 13.Vehicle dynamics controller 10 includes a variety of structured processing layers adapted to effect desirable objectives of promoting re-use of the software components, application development time and cost reductions, maintainability and multiple vehicle platform adaptation, among others. Significantly, the present invention promotes the reusability of not only the large scale control application software components but also of the vehicular interfaces, signal conditioning, internal bus structures and output processing.Beginning at the left of the vehicle dynamics controller 10 in FIG. 1, signal processing layer 15 is shown interfacing with the various input signals 16 from vehicle 11, sub-system actuators 13 and sub-system controllers 14. Signal processing layer 15 is communication coupled to process inputs layer 17 via internal sensor bus 22. Process inputs layer 17 is also communication coupled to vehicle dynamics/driver intent layer 19 via internal vehicle dynamics bus 26, both of which are described herein below. Process inputs layer 17 is in turn communication coupled to vehicle dynamics/driver intent layer 19 via internal input bus 24. Vehicle dynamics/driver intent layer 19 is also communication coupled to signal processing layer 15 via internal sensor bus 22. Vehicle dynamics/driver intent layer 19 is in turn communication coupled to control system layer 21 via internal vehicle dynamics bus 26. Control system layer 21 is also communication coupled to signal processing layer 15 via internal sensor bus 22 and to process inputs layer 17 via internal input bus 24. Control system layer 21 is in turn communication coupled to process outputs layer 23 via internal control bus 28. Process outputs layer 23 is also communication coupled to process inputs layer 17 via internal input bus 24. Process outputs layer 23 is in turn communication coupled to command processing layer 25 via internal output bus 30. Finally, command processing layer 25 is in turn communication coupled to the various sub-system controllers 14 via CAN bus 20 to provide the previously described control commands 18.From the preceding description of the vehicle dynamics controller 10, it can be appreciated that the described layers provides software partitioning, including at the vehicle interfacing, signal conditioning, internal bus structures and output processing to provide the aforementioned advantages. The layer independence allows for desired modularity and decomposition/recomposition of one or more layers or software components for development and maintenance without substantial effect upon any remaining layers or software components. The inter-layer bussing provides desired access to varying levels of input and output signals useful in development (e.g. for debugging and instrumentation) and sophisticated utilization of varying degrees of refined data both within and outside of the vehicle dynamics controller. The availability of gross-level decomposition of the vehicle dynamics controller of FIG. 10, and of structured inter-layer access via the internal bus thus architected, enables and promotes the objectives of software component re-use, application development time and cost reductions, maintainability and multiple vehicle platform adaptation.Additional detail with respect to the various layers and inter-layer communication of vehicle dynamics controller 10 thus described in reference to FIG. 1 will be set forth with additional reference now to the remaining FIGS. 2-6.Beginning with FIG. 2, signal processing layer 15 includes functional block 31 for reading CAN based signals, from sensors or derivations, including from vehicle 11, actuators 13 and sub-system controllers 14. Block 31 is communication coupled to CAN input conversion functional block 33 via internal receive CAN bus 32. Blocks 31 and 33 read the signals in, ensuring accuracy and robustness through appropriate level diagnostics, and convert the CAN signals to engineering units raw inputs for use in subsequent layers. Block 33 is communication coupled to internal sensor bus 22 for communicating the inputs with process inputs layer 17, vehicle dynamics/driver intent layer 19 and control system layer 21.FIG. 3 illustrates process inputs layer 17 in additional detail including functional block 35 for filtering the inputs on internal sensor bus 22, thus centralizing input filtering to a common software component. From block 35, via internal filtered inputs bus 34, the filtered inputs are provided to functional block 37 for adjusting the inputsfor example, center of gravity adjustments to sensed motion for an offset motion sensor placement. From block 37, via internal adjusted inputs bus 36, the adjusted inputs are provided to functional block 39 for centering the inputsfor example

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论