




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复习总结,1.行列式的三种展开定义:,按行指标展开,,按列指标展开,,完全展开,,复习总结,性质1行列式与它的转置行列式相等.,性质2互换行列式的两行(列),行列式变号.,推论如果行列式有两行(列)完全相同,,则此行列式为零.,性质5若行列式的某一列(行)的元素都是两数之和.,性质把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变,计算行列式常用方法:利用运算把行列式化为上三角形行列式,从而算得行列式的值,复习总结,定理行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即,行列式按行(列)展开法则(Laplace定理),性质奇数阶反对称行列式等于零,性质范德蒙行列式的结构特点和结果,复习总结,例,矩阵的逆,复习总结,性质,矩阵的初等变换,矩阵的初等变换,矩阵的初等变换,矩阵的初等变换,定理设是一个矩阵,对施行一次初等行变换,相当于在的左边乘以相应的阶初等矩阵;对施行一次初等列变换,相当于在的右边乘以相应的阶初等矩阵.,矩阵的初等变换,性质:,复习总结,性质:经过同样的行初等变换,,从而,,用矩阵乘法表示,求矩阵逆的方法,求矩阵的初等分解方法,Gauss消去法,定理,线性方程组有解,自由未知量个数为,Gauss消去法,推论若,推论若,向量的线性相关性,定义,则称向量组是线性相关的,否则称它线性无关,(1),只有时,(1)式成立,线性无关的等价说法:,或者(1)式成立时,必有,向量的线性相关性,例含有零向量的向量组必线性相关.,性质若向量组的一个部分组线性相关,则整个向量组也线性相关,性质若向量组线性无关,则其任意部分组也线性无关,例一个零向量形成的向量组是线性相关的,,一个非零向量是线性无关的.,向量的线性相关性,根据定义,列出齐次线性方程组,由解的情况进行判断:,有唯一零解线性无关;,有非零解线性相关;,推论,个维向量,线性相关,线性无关,推论,个维向量,必线性相关,推论设,维向量组,若,则线性相关,向量的线性相关性,向量组的秩,满足如下条件:(I)向量组(2)线性无关;(II)向量组(1)中每个向量都可由向量组(2)线性表示.(即再添加任何一个向量都线性相关),则称向量组(2)为(1)的一个极大线性无关组.,定义一个向量组中,它的极大无关组所含向量,个数称为向量组的秩.,推论两个等价的向量组有相同的秩.,向量组的秩,向量组的秩与矩阵的秩之间的关系:,定义矩阵的行向量组的秩称为的行秩;的列向量组的秩称为的列秩.,向量组的秩与矩阵的秩互相转化,向量组与矩阵互相转化,向量组的秩,上述定理还提供了求向量组的秩的方法:,(1)将所给向量组中的各个向量作为矩阵的行向量(或列向量)得到矩阵;,(2)将矩阵施行初等变换化为如(7)形式的的矩阵.,(3)观察(7)知,则即为所求向量组的秩.,性质初等行(列)变换不改变矩阵的行秩,列秩以及矩阵的秩,向量组的秩,定理矩阵经初等行变换得矩阵,则与的行向量组等价,且与的列向量组具有相同的线性相关性.,所以,线性组合系数也相同的,矩阵的初等变换:线性表示,线性相关性,求矩阵、向量组的秩,求极大无关组,求线性表示系数,求线性方程组的解等等,向量组的秩,推论3给定,则,子空间,定义为一个向量空间,向量满足,(1)线性无关;,(2)中任意一个向量都可由向量组,线性表出.,则向量组称为向量空间的一个基,,称为向量空间的维数,也称为维向量空间.,基的实质:向量组的一个极大无关组,线性方程组解的结构,线性方程组解的结构,线性方程组解的结构,线性方程组解的结构,通解的向量表示形式,线性方程组解的结构,线性方程组解的结构,线性方程组解的结构,通解的向量形式,线性方程组解的结构,线性方程组解的结构,线性方程组解的结构,(1)写出系数矩阵及其增广矩阵;,求解过程:,(2)初等行变换化增广矩阵为简化的阶梯型矩阵,(4)写出对应的齐次导出组的基础解系;,(3)写出原来的非齐次组的一个特解;,(5)写出原来的非齐次组的一个通解。,复习总结,第五章特征值特征向量,矩阵特征值,特征向量的定义及实质,矩阵相似的定义及相关性质,相似对角化的条件,,实对称矩阵特征值、特征向量的性质(3条),特征值,特征向量的具体求法,实对称矩阵的正交相似对角化,特征值的性质,与行列式、迹之间的关系,复习总结,第六章二次型,二次型定义,其与矩阵元素之间的关系,矩阵的合同关系,二次型的标准型,规范型,复、实对称矩阵的合同(对角化)条件,,正定矩阵的性质与判定定理:四条,二次型的规范形,定理复数域上任意一个二次型都可以经可逆线性替换转化成唯一的规范形,即,定理任意一个复对称矩阵都合同于一个形式为,亦即,推论复对称矩阵彼此合同的充要条件是它们的秩相同,二次型的规范形,定理实数域上任意一个二次型都可经可逆替换转化成唯一的规范形。,定义二次型的规范形中,正平方项的个数称之为二次型的正惯性指数;负平方项的个数称之为二次型的负惯性指数,他们的差称之为符号差,当然,正负惯性指数之和等于矩阵的秩或者二次型的秩。,推论实对称矩阵彼此合同等价于它们的正负惯性指数是相同的,常用解题思路,利用向量空间的思想,4.条件要求确定参数的取值,考虑是否有某行列式为零等等,反之,向量组的求秩等运算也经常转化为矩阵之间的乘积运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年低碳经济发展考试试题及答案动态分析
- 校园运动会的一天记事文章(5篇)
- 难忘的班级集体活动事件作文11篇
- 高中英语语法复习课教案:时态辨析与实践运用
- 2025年泡腾剂项目立项申请报告模板
- 我们一起游泳难忘的夏日时光作文(12篇)
- 2025年成人高考《语文》古诗词文学性与艺术性试题库
- 2025年春季小学五年级数学期末冲刺卷:数学思维拓展与训练
- 2025年电子商务师(中级)职业技能鉴定试卷:电商短视频电商数据分析
- 2025年专升本艺术概论考试模拟卷(艺术审美心理与艺术史研究前沿课题)
- GB∕T 11344-2021 无损检测 超声测厚
- 沪教牛津版小学一至六年级英语单词汇总(最新)
- 《云南省建筑工程资料管理规程应用指南)(上下册)
- 数列求和中常见放缩方法和技巧(含答案)
- 宝兴县中药材生产现状及发展思路
- 台州市幼儿园教师考核表.
- 小儿雾化吸入课件.ppt
- TM92成品鞋弯折测试
- 锁骨骨折幻灯片
- 高填方、深挖路堑边坡和软基监测方案
- DB42∕T 1124-2015 城市园林绿化养护管理质量标准
评论
0/150
提交评论