




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十八章勾股定理18.1勾股定理,勾股定理,证明,应用,小结,猜想,练习,史话,观察思考,相传2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家的用砖铺成的地面中反映了直角三角形三边的某种数量关系。同学们,我们也来观察下图中的地面,看看能发现些什么?,得出结论:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.,即在等腰直角三角形中,两直角边的平方和等于斜边的平方.,一起探究,等腰直角三角形三边之间有上述性质,那么其他的直角三角形三边是否也具有上述性质呢?请用网格纸动手画一画,量一量,和同桌交流想法.,C的面积(单位面积),13,25,(1)观察图1、图2,并填写下表:,A的面积(单位面积),B的面积(单位面积),图1,图2,16,9,4,9,做一做,分割成若干个直角边为整数的三角形,(面积单位),(2)三个正方形A,B,C的面积之间有什么关系?,SA+SB=SC,即:两条直角边上的正方形面积之和等于斜边上的正方形的面积,命题1如果直角三角形的两直角边长分别为a、b,斜边长为c,那么:,猜想:,左图的面积为右图的面积为a2+b2c2可知a2+b2=C2,试一试,我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.所以命题1叫勾股定理.,经过证明被确认正确的命题叫定理.,如果直角三角形的两直角边长分别为a、b,斜边长为c,那么:,勾a,股b,弦c,勾股定理(gou-gutheorem),在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,经隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股定理”或“商高定理”,史话勾股定理,在西方,希腊数学家欧几里德(Euclid,公元前三百年左右)在编著几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。,毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。,相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,又有“百牛定理”之称。,拓广应用,1.一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?,分析:连结AC,在RtABC中,根据勾股定理:因此,因为AC大于木板的宽,所以木板能从门框内通过。,拓广应用,2.,一个3m长的梯子AB斜靠在一竖直的墙AC上,这时AC的距离为2.5m如果梯子顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?,分析:在RtABC中,在RtDCE中,所以梯子的顶端沿墙下滑0.5m,梯子底端将外移0.58m,练习,1.小明的妈妈买了一台29(74厘米)的电视机,小明量了电视机的荧屏后,发现荧屏只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?,2.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60m,AC=20m.你能求出A、B两点间的距离吗(结果保留整数)?,练习,小结,内容总结:探索直角三角形两直角边的平方和等于斜边的平方;利用勾股定理解决实际问题。,方法总结:用直角三角形三边表示三个正方形面积观察归纳发现勾股定理任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中铁十五局集团上海智慧交通科技有限公司招聘22人笔试题库历年考点版附带答案详解
- 2025年呼吸科患者气道管理技术考核模拟试题答案及解析
- 2025年网络安全行业网络安全风险与数据隐私保护研究报告
- 2025年放射肿瘤科放射治疗计划设计模拟考试答案及解析
- 2025年共享经济行业共享经济模式创新与共享经济监管政策研究报告
- 2025年农产品行业农产品电商发展模式研究报告
- 2025年农产品行业产地直供模式研究报告
- 2025年建筑工程行业智能建造技术应用前景展望研究报告
- 曹操献刀课件
- 2025年智慧农业行业农业大数据应用案例探讨报告
- 消防水池挖槽施工方案
- 2025至2030中国血液辐照器行业项目调研及市场前景预测评估报告
- 九上第19课:法国大革命和拿破仑帝国-
- 医院电梯司机安全培训课件
- 云南省烟草公司2025秋招网申-申论题模板及答案
- 高一地理第一次月考卷02【测试范围:必修一第1~2章】(考试版)
- 2024年中国农业银行浙江省分行招聘真题
- 污水处理厂二次污染防治方案
- 广东省上进联考2025-2026学年新高三秋季入学摸底考试生物(含答案)
- 2025年沼液还田协议书
- 物业管理服务项目(某法院)方案投标文件(技术方案)
评论
0/150
提交评论