大学物理实验课程绪论english_第1页
大学物理实验课程绪论english_第2页
大学物理实验课程绪论english_第3页
大学物理实验课程绪论english_第4页
大学物理实验课程绪论english_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,IntroductionofPhysicalExperiment,CenterofPhysicsExperimentSeptember,2008,2,1.WhyMustYouHavetheClassofPhysicalExperiment?2.Measurement,ErrorandUncertainty3.GraphandMethodofLeastSquares4.HowDoYourBestduringClass?,3,1.WhyMustYouHavetheClassofPhysicalExperiment?,1.1EffectsofPhysicalExperimentonScienceandTechnology1.2PurposesoftheclassofPhysicalExperiment,4,RolesofPhysicalExperiment,Physicsisasciencethathasdevelopedoutofeffortstodescribehowandwhyourphysicalenvironmentbehavesasitdoes.Theexcitingfeatureofphysicsisitscapacityforpredictingthewaynaturewillbehaveinonesituationonthebasisofexperimentaldataobtainedinanothersituation.SuchPredictionscanhaveatremendousimpactinourlives,forinthissensephysicsisattheheartofmoderntechnology.,5,1997:LaserCoolingandCapturingNeutralAtomStevenChuCohen-TannoudjiWilliamD.Phillips1998:FractionalQuantumHallEffectRobertB.LaughlinHorstL.StormerDanielC.Tsui,6,2001:Bose-EinsteinCondensationEricA.CornellWolfgangKetterleCarlE.Wieman,7,PurposesoftheClassofPhysicalExperiment,LearningofExperimentalKnowledgeTrainingofExperimentalAbilityEnhancingofExperimentalAccomplishment,8,LearningofExperimentalKnowledge,Howtolearn?Andlearnwhat?Observeandanalyzephysicalphenomena.Measurephysicalquantities.Masterbasicskillsofexperimentanddesigningideas.Haveaninsightintotheframeofphysics.,9,TrainingofExperimentalAbility,Properuseofinstrumentsbymeansoftextbooksorinstructions;Elementaryanalysisandjudgmentofphenomenabyusinglawsofphysics;Correctrecordanddisposalofdata,drawingofplotsofcurves,rationalexplanationofresults,writingofreports;Properdesignofexperimentsinaccordwithexperimentalpurposesandinstrumentsinhand.,10,EnhancingofExperimentalAccomplishment,(scientific)Style;(seriousandearnest)Attitude(ofwork);(exploring)Spirit(ofresearchandinnovation;Virtues(ofabidingbydiscipline,cooperating,andtakinggoodcareoffacilities).,11,Hopefully,allofyoupayattentiontothecourse,andreallygetwhatyouwant!,12,2.Measurement,ErrorandUncertainty,2.1MeasurementandSignificantFigures2.2ErrorandBasicKnowledgeoftheEstimateofUncertainty,13,MeasurementandSignificantFigures,MeasurementReadingsofSignificantFiguresOperationofSignificantFiguresRulesofRoundingoffSignificantFigures,14,Measurement,Measurement:withtheaidofscientificmethods,byusingpropertoolsorinstruments,acharacterizingphysicalquantity(measuredquantities)iscomparedwiththeselectedunitofthesamekindofthephysicalquantity,andtheratioisthevalueofthemeasuredquantity.,15,Directmeasurement:todirectlycompare,suchaslength;Indirectmeasurement:tocalculatethevalueofthemeasuredquantity,withthehelpoftheknownfunctionbetweenthemeasuredquantityandthedirectmeasuredones.Value=readingnumbers(significantfigures)+unitSignificantfigurescredibledigitsdoubtabledigits,16,Readingofsignificantfigures,15.2mm15.0mm,17,Operationofsignificantfigures,Addition,subtraction:whennumbersareaddedorsubtracted,thelastsignificantfigureoccursinthefirstcolumn(countingfromright)containinganumberthatresultsfromasumofdigitsthatareallsignificant.4.1786.30+21.331.778=31.8,18,Multiplication,division:whennumbersaremultipliedordivided,thefinalanswerhasanumberofsignificantfiguresthatequalsthesmallestnumberofsignificantfiguresinanyoftheoriginalfactors.4.178101978=42.2,19,Power,extraction:anumberofsignificantfiguresintheanswerarethesameasanumberofthebase。3.253=34.3logarithm:thenumberofdigitsofthemantissahasthesamenumberof.lg1.938=0.2973lg1938=3+lg1.938=3.2973Exponent:thenumberofsignificantfiguresisthesameasthedigitsoftheexponentafterthedecimalpoint(includingthezerosnexttothedecimalpoint).106.25=1.8106,100.0035=1.008,20,Trigonometricfunction:thedigitsvarywiththesignificantfiguresoftheangle.Sin3000=0.5000Cos2016=0.9381Anexactnumberisnotsubjecttorulesofoperationofsignificantfigures.Aconstanthasthesamesignificantfiguresofthemeasuredquantitythathasthesmallestones.,21,rulesofroundingoffsignificantfigures,Ifthevalueoftheeliminatedpartislessthanahalfunitofthelastsaveddigit,thenumberinthelastdigitdoesntchange.Ifthevalueoftheeliminatedpartisgreaterthanahalfunitofthelastsaveddigit,thenumberinthelastdigitisaddedbyone.Ifthevalueoftheeliminatedpartequalsahalfunitofthelastsaveddigit,whenthenumberinthelastdigitiseven,itkeepsthesame;whenodd,itisaddedbyone.4.327494.3274.327614.3284.327504.3284.328504.328Generallyspeaking:fouroffsixup,fiveeven.,22,ErrorandBasicKnowledgeoftheEstimateofUncertainty,ErrorDisposalofrandomerrorExpressionofuncertaintyofameasuredresultCompositionofuncertaintyofindirectmeasurement,23,AstoaphysicalquantityxbeingmeasuredErrordxmeasurementvaluextruevalue,Truevalue:theactualvalueofaphysicalquantityunderacertainexperiment,Error,24,Thereexisterrorsinallmeasurements.Anerrorcanbemadesmallerandsmaller,butneverzero.Therefore,ameasurementwithoutanerrorismeaningless.,Error,25,Systematicerror,Definition:Inthecourseofmeasuringaquantitymanytimes,theabsolutevaluesandthesignsoferrorsremainunchangedorvaryinafixedwaywithmeasuringconditions.Reason:measuringinstrument,measuringway,environment,andetc.Classificationanddisposal:1quantifiedsystematicerror:revision.suchaszeropositionerrorsofascrewmicrometerandmultimeter,anderrorsduetoignoringofinnerresistors.quantifiedsystematicerror:estimateoftherangeofanerror.suchasthreadintervaltolerance.,26,Randomerror,Definition:Inthecourseofmeasuringaquantitymanytimes,theabsolutevaluesandthesignsoferrorsvaryinanunpredictablemanner.Reason:Fluctuationsofexperimentalconditionsandenvironmentalfactors.,27,(1)Theprobabilitiesofsmallerrorsaregreaterthanthoseoflargeones;(2)Thedistributionoftheerrorprobabilityisanormaldistributionfunctioniftimesofmeasurementapproachtoinfinity;(3)Cancellation:thearithmeticaverageofmeasurementvaluescaneliminateorcanceltherandomerror.,Characteristicofrandomerror,28,Degreeofdispersionofmeasuredvalues,l,29,Thisprobabilityiscalledfiducialprobability,andthecorrespondingrangeiscalledfiducialrange.,30,Ifthefiducialrangeisenlarged,thefiducialprobabilitycanincrease.,31,MeanvalueSupposethataphysicalquantityismeasuredntimes,andthemeasuredvalueisxi(i=1,2,n)Thearithmeticalaverageistakenastheoptimalmeasuredvalue.Whennapproachestoinfinity,theresultisthetruevalueofthequantity.,32,Whennisfinite,thearithmeticalaverageisnotequaltothetruevalue,andhisdeviationisasfollows:Themeaningof:theprobabilityofthequantitytobemeasuredintherangeis0.683.,33,Inphysicalexperiments,thefiducialprobabilityistakenas0.95,andthenthefiducialrangeofT-typedistributioncanbewrittenasfollowing:Ingeneral,themeasurementtimenistakenassix.,34,Expressionofuncertaintyofameasuredresult,Uncertaintyisanerrorlimitunderacertainfiducialprobability,andreflectsarangeofpossibleerror.Ingeneral,FiducialProbability:0.95!,35,TypeA:thecomponentwhichcanbeestimatedbyusingstatistics,Thetypeofuncertainty,36,TypeB:thecomponentwhichcannotbeestimatedbyusingstatistics,forexample,systematicerror.cisfiducialfactor.Whenthefiducialprobabilityis0.95,c=1.05,37,Uncertainty:Relativeuncertainty:Result:,38,Attentions:,1.Numberofsignificantfiguresofthearithmeticalaveragedoesntexceedthatofthemeasuredvalue;2.Uncertaintyandrelativeuncertaintyhaveoneortwodigitsofsignificantfigures;3.Thelastdigitofuncertaintyisevenwiththatoftheaverage.,39,Exampleone:measurementofdiameterofawirebyusingascrewmicrometer.,Datumtable,40,Solutionforexampleone:,Noneofabnormaldata,41,42,Result:,43,Calculationofuncertaintyofindirectmeasurement,Themeasuredquantityxasafunctionofdirectlymeasuredquantitiesxi:(1)foradditionorsubtraction.(2)formultiplication,division,power,orexponent.,44,Oftenusedformulas,45,Example,Allthesizesofaringaremeasuredasfollows.Please,givethefinalresultofitsvolume.,Resolution:,2.Resultinguncertainty,1.,46,3.Relativeuncertainty,4.Finalresult,47,3.GraphandMethodofLeastSquares,3.1Disposalofdatabygraphicmethod3.2LinearFittingbymethodofminimumsquares,48,2.Chooseproperscalesforaxestodeterminethesizeofcoordinatepaper.,Datatableofvoltmeter-ammetermethodforresistance,Procedureofdisposalofdatabythegraphicmethod,1.Makeatableofdata.,49,3.Marktheaxes:broadenedline,arrow,sign,name,andunit.,5.Connectthedatapointssmoothlywithalineorcurve.,4.Symbolizedatapoints.,50,6.Givealegendofthegraph.,7.Giveanameofgraph,51,:Improperfigures,52,Corrected:,53,Volt-amperecharacteristics,54,Corrected:,55,56,Supposethequantitiesx,yabidebythelinearrelationy=a+bx.xi,yii=1,.,n当Whenasumofsquaredifferencesbetweenthemeasuredyiandamountofa+bxiisminimum,thatis,aandbarefittingparameters.,LinearFittingbymethodofminimumsquares,57,58,59,Correlationcoefficientr:Exceptaandb,rmustbecalculated.r-1,1,|r|1,linearitybetweenxandyisgood;|r|0,thereisnolinearitybetweenxandy,andthelinearfittingismeaningless.Inphysicalexperiments,|r|isgreaterthan0.999.,where,60,Solutionsfora,b,andr:1.Excel;2.OriginorMatlab(7/pub/origin);3.Programswrittenbyyourself.Beforeleastsquaremethodisused,theabnormalpointsareremovedfromdata!,61,4.Howdoyourbestduringtheclass?,PreparationOperationReport,62,Preparation,Objective,Principle,Precaution。,63,Name,objective;Sketch(electricoroptical),Formula;Datatable(known,given,directly-measured,indirectly-measuredquantity,andunit)。Donotcopyprinciples!,Contentofpreparationreport:,64,Operation,Abidebyrules;Understandusageofinstruments;Dosometentativeoperationsbeforeformalmeasurements;Lookaroundandanatomizeexperimentalphenomena;Faithfullyrecorddataandphe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论