(应用数学专业论文)随机利率下的实物期权研究.pdf_第1页
(应用数学专业论文)随机利率下的实物期权研究.pdf_第2页
(应用数学专业论文)随机利率下的实物期权研究.pdf_第3页
(应用数学专业论文)随机利率下的实物期权研究.pdf_第4页
(应用数学专业论文)随机利率下的实物期权研究.pdf_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要 实物期权,一个相对于金融期权的概念,是一种现实的选择权,是企业进 行长期投资决策时拥有的能根据决策时的不确定园索改变行为的权利。本文旨 在研究随机利率下的实物期权,分析利率不确定性对投资决策的影响。 本文首先介绍了实物期权的发展,研究实物期权的现实意义,国内外研究 现状以及本文的研究思路。然后对完全信息下的实物期权理论和方法进行了综 述,指出实物期权研究的一些难点和问题。接着对于一些预期现金流相对稳定 的投资决策,并且利率不确定性对这些投资决策起关键作用时,建立实物期权 的单因素模型,然后根据模型分析了利率对投资决策的影响,尤其是利率的滞后 影响。最后当预期现金流和利率都随机变化时,建立实物期权的简单的二因素 模型,在b 1 诎( 一s c h 0 1 e 8 框架下,运用偏微分方程的方法和技巧,对这种简单情 形给出一个显式实物期权定价公式,并根据这个公式简单分析了利率的影响。 关键词: 实物期权,利率不确定性,投资决策,偏微分方程( p d e ) ,滞后。 a b s t r a c t r e a lo p t i o n s ,ac o n c e p tr e l a 埘v et on n a 肌c i 以o p t i o n s ,i sar i g h tt oc h o o s ei n t h ep r a c t i c e w i t ht h i sr 培h t ,山e 矗r m 8c a nc h a n g et h e i ra c t i o n sb yt h eu n c e r t a i n t y f a c t o r sw h e nt h e ya r em a k i n g1 0 n g t e r 】nc a 面t a li n v e 8 t m e n td e c i s l o n s i nt m s p a p e r , o u rp u r p o s ei st os t u d yt h er e a l0 p t i o n su n d e rs t o c h 8 s t i ci n t e r e 8 tr a t ea n da n a l y s e t h ee f f e c to fi n t e r e s tr a t eu n c e r t a i n c yo ni n v e 8 t m e n td e c i s i o n s t h e 丘r s tp a r ti s 址l eb a s eo ft h i 8p a p e r s e c o n d l y ,w ed i 8 c u s ss o m et h e 。r ya n d m e t h o d s0 fr e m 叩t i o n su n d e rc o m p l e t ei n f o r m a t i o n ,a n db r i n gi ns o m ed i 伍c u l t a n dp r o b l e mi nt h e8 t u d yo fr e a lo p t i o n s + t h i r d l y ,f o rm a n yd e c i s i o n s ,w h e nt h e r e v e n u e 锄dc o s ts t r e 眦s 甜er e l a t i v e l ys t a t i cb n di n v e s t m e n ti sd r i v e nb yi n t e r e 8 t r a t eu n c e r t a i n t y 、v es t i c kt ot h ee 矗b c to fi n t e r e s tr a 七eo ni n v e s t m e n td e c i 8 i o n su n d e r as i n g l e f 屺t o rm o d e l ,e s p e c i 旬l yt h ee 鹏c to fh y 8 t e r e s i s f o u r t h l y ,w h e nb o t ht h e r e v e n u ea n di n t e r e 8 tr a t en u c t u a t er a n d o m l y ,、v ei n t r o d u c eat w 0 _ f 乱t o rm o d e l , t h e nu s i n gt h em e t h o do fp d ea n dw o r k i n gi nt h ef t a m e w o r ko fb l a c k s c h o l e s ,r e o b t 8 i naf b r m u l at op r i c es u c hr e 甜o p t i o n 8 k e y 、】l ,o r d s : r e a lo p t i o n s ,i n t e r e s tr a t eu n c e r t 越n t y i n v e s t m e n td e c i s i o n s p a r t i a ld i 丘色r e n te q a t i o n ( p d e ) ,h y s t e r e s i s 学位论文独创性声明 本人所呈交的学位论文是我在导师的指导下进行的研究工作及取得的研究成 果a 据我所知,除文中已经注明引用的内容外,本论文不包含其他个人已经发 表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文 中作了明确说明并表示谢意。 作者始盔壁 日期 学位论文授权使用声明 删乐厶。 本人完全了解华东师范大学有关保留、使用学位论文的规定,学校有权保 留学位论文并向国家主管部门或其指定机构送交论文的电子版和纸质版。有权 将学位论文用于非赢利目的的少量复制并允许论文进入学校图书馆被套阅。有 权将学位论文的内容编入有关数据库进行检索。有权将学位论文的标题和摘要汇 编出版。保密的学位论文在解密后适用本规定。 学位论文作者签名:磴 日期 如o z 多l 导师答名掣极导师签名:j 立! 坠 日期 。秽彩g 、p 第一章绪论 1 1 本文研究背景 1 1 1 期权概念 按照最一般的定义,期权是一种未来的选择权,是指购买方向卖方支付一定 的费用后所获得的在将来某一特定到期日或某一时间内按协定的价格购买( 买 权,c a l l o p t i o n ,看涨期权) 或出售( 卖权,p u t o p t i o n ,看跌期权) 一定数量的 某种标的资产的权利。根据标的资产不同,期权分为金融期权和实物期权;根 据执行时间不同,期权分为欧式期权和美式期权。但实际上期权所蕴含的内涵 远比这个定义从字面上所表达的含义要深刻和广泛得多。从本质上说,期权实 际上是给予期权购买者一段时间,使其能够进一步利用所获得的新的信息,降 低对未来预期中不确定性的程度,从而做出更加合理的判断和决策。因此,期 权的价格中包含了在这一段时间中信息的价值,或者说期权的价值反映了因不确 定性降低,决策更加合理科学所带来的收益的增加或损失的减少。 由于期权具有价值,因此在实际决策中必须对其进行合理的度量。实际上, 所有经济决策的核心问题就是如何合理地进行定价,为所有相关经济因素确定 一个合理地价格,使决策选择建立在一个公平、客观、合理和可比的基础之上, 成为决策成功与否的关键。期权定价理论虽然源于对金融期权的估值,但其主 旨是为了降低不确定性所必须付出的成本问题,而不确定性是所有经济活动的 本质特征。这决定了期权定价技术的应用绝不仅仅局限于对金融资产为标的资产 的期权。许多现实问题在分析过程中常常可以把核心问题归结为期权定价问题 第一章绪论 2 来处理,即归结为确定期权价值的几个因素:执行价格v ,到期时间t ,波动 率口,无风险利率r 和红利q ( 股息) 的分析计算。 1 1 2 实物期权概念 实物期权的概念,最早可追溯到亚里士多德( a r i s t o t l e ) 的著作中。亚里士 多德讲述了这样一个故事:位大智的哲学家t h a l e s 在橄榄收获的前半年,用很 少的钱与一些拥有橄榄榨油机的老板作交易,他以普通的利率购买租用这些榨油 机的权利。当橄榄创记录丰收时刻到来时,种植者们对榨油机的需求剧增,他 就以高于市场利率的价格将榨油机租给种植者们,而他给榨油机的主人则只付 原来约定价格的钱,t h m e s 从中获得利差大赚其钱。在这个故事中,t h a l e s 购买 租用榨油机的权利,但不是责任与义务( 他购买了一个买权,买或租的权利, 相对应的则是卖权,即出售的权利) 。如果橄榄收成很差,他将选择放弃租用榨 油机,他损失的仅是原来很小的投资,即期权的费用。这是一个古老而典型的 实物期权例子。 早在b l a c k 和s c h o l e s 开始研究金融期权定价理论时,他们就已经意识到期权 定价理论同时可以应用到其它各种问题的定价。受金融期权的启发,人们提出 了与金融期权虚拟资产相对应的概念一实物期权,并开始将期权思想和方法 应用于金融期权市场以外的实物资产投资与管理,尤其是资本预算投资中,并 取得了一定进展。实物期权方法在自然资源投资、r d 投资决策、项目投资决 策等方面为人们提供了新的思路和指导。因此,所谓实物期权,是以期权概念 定义的现实选择权,是指企业进行长期资本投资决策时拥有的能根据决策时的 不确定性因素改变行为的权利,是与金融期权相对的概念,属于广义的期权概 念。 上个世纪8 0 年代,国外的金融学者开始将期权分为金融期权和实物期权两 种,并把实物期权应用到风险项目投资的评估中。在s t e w a r tm y e r s 首先将投资 机会看成是一种期权之后,许多学者开始研究期权在实物投资中的应用及价值的 第一章绪论 3 确定。m a s o n & m e r t o n ( 1 9 8 5 ) 认为实物期权的价格可以参照金融期权的定价模型 来确定,他们认为如果动态组合的可交易孪生证券的风险特征在完全市场条件 下,如果与不可交易的实物期权的风险特征完全相同,则这种实物期权的定价 问题就可以解决。c o x ( 1 9 8 5 ) 认为,无论实物期权是否能够交易,在存在系统风 险的前提下都可以用确定的等价率代替实际的增长率进行定价。在近年来的实物 期权定价研究中,单个实物期权( 8 i n g l er e 以o p t i o n ) 的估价问题取得了显著成 效,主要的研究成果涉及延期期权、转换期权、增长期权、放弃期权、更改期权 等方面。在多数情况下,对于单个实物期权的定价,都能够找到解析解。进入 九十年代,n i g e o r g i s 和s m i t & a i l l ( u m 等人将投资决策中的多阶段投资和竞争博 弈理论引入到实物期权的定价方法的研究中,开始研究复合期权价值的确定和 期权博弈理论。 1 1 3国内外研究现状 目前实物期权方法在投资领域中的应用研究是最热门的前沿之一。国内外 的研究成果主要集中于完全信息下对单个实物期权的估价、复合期权及其相互依 赖性等理论探索方面。国内关于实物期权的研究是近几年才开始的,侧重点是 把有关理论应用于管理实践,尤其是将投资看作实物期权的新观点,强调了绝 大多数投资的不可逆性以及投资所处经济环境前后的不确定性,意识到等待更多 信息的价值。国内外的研究成果多是把金融期权的定价模型( 尤其是b s 定价 公式) 进行改造后应用到实物期权定价过程中。这种方法忽略了实物期权自身 不同于金融期权的特点,具有一定的随意性。而系统地研究实物期权的定价理 论和方法,探讨不完全信息下的实物期权的定价理论和方法,目前这方面的研究 在国内外也才刚刚开始。 第一章绪论 1 2 本文研究意义 4 实物期权概念和分析方法在西方经济发达国家己出现二三十年了,现在已逐 步进入实践应用阶段。在我国,实物期权的引进和研究则是近几年的事,现在 已有不少学者尝试应用实物期权方法来解决投资决策中出现的问题。然而在实 践中,很多实践者简单地应用金融期权的定价公式来解决来解决实物期权的定价 问题。如果只是将实物期权作为一种思维方式或作为一种经济解释理论,则金 融期权定价公式可以很清楚地解释期权价值的来源及影响期权价值大小的因素, 确实在一定程度可以满足使用者的要求了,但是如果将实物期权作为一种决策工 具,则合理而恰当的定价方法是应用实物期权的关键,因为大多实物期权不是 免费获得的,决策者必须在其取得成本与期权的价值之间进行权衡。此外实物 期权与金融期权相比,其形式更加多样化,内容更为复杂,因此除了一些与金 融期权类似的实物期权可以直接应用金融期权定价公式外,对于大量的实物期 权还要运用其他领域的技术和方法,如决策树技术和随机动态规划法等。因此 从定价技术和定价方法看,实物期权比金融期权要广泛得多。 由于在大多数投资决策问题中,我们都要面对不确定性因素的影响,这样, 如何把随机性的因素考虑其中并在不确定的环境中做出最优的决策就成为了一个 非常重要的问题。在大多数情况下,决策者都或多或少的享有种管理上的灵 活性,这种管理的灵活性使得管理者在环境变得有利或不利的情况下,都能采 取相应的行动而使得企业的价值最大化,管理灵活性赋予企业的是一种权利,而 不是义务。从这个角度看,实物期权定价理论的相关研究在投资决策和控制优 化应用中具有广泛的应用价值。在现实的经济生活中,存在着大量的具有管理 灵活性的不确定性的投资决策问题,传统的方法,比如净现金值法会低估这些投 资项目的价值,并且其误差在有些情况下会非常之大,因此人们迫切的需要一 种新的方法,这种方法能够用一种合理的方式将不确定性和管理灵活性纳入到 项目评估的过程之中。实物期权理论目前被认为是最有希望满足人们这种需要 的理论发展。 第一章绪论 5 因此,实物期权理论的重要实际意义主要表现为两个方面:一是重视投资项 目的灵活度。二是修正传统d c f 方法对有战略价值的投资的忽略、低估。可以 说实物期权方法改变了传统决策标准,丰富了投资决策理论,使决策者获得延 迟投资、扩大投资、放弃投资和转换使用的灵活性,比传统方法更有效,应用更 广泛。 由于国内外对于不确定条件下的实物期权的理论和方法研究才刚刚开始, 且实物期权价值的不确定性研究主要集中在预期现金流收入上,都是假设贴现率 ( 无风险利率r ) 以及其它定价参数为常数,没有考虑参数的不确定性对实物期 权的影响。而对于一些投资决策问题,在预期现金流收入相对稳定的情况下, 当投资主要由利率的不确定性决定时,讨论利率对投资决策的影响将具有重要的 意义。所以本文将主要讨论利率的不确定性对实物期权的影响,以及进一步对 投资决策的影响,探讨建立实物期权的二因素模型。通过这些研究,为实物期 权应用的进一步深化奠定了一定的理论基础,在提高管理决策的科学性,增强 管理决策的灵活性方面也具有重要的应用意义。 1 3 本文研究内容和思路 本文主要尝试建立无风险利率随机变化时的实物期权模型,考虑利率不确定 性对投资决策的影响。首先将产品价格不确定条件下企业的进入与退出行为的 研究方法,运用到利率不确定条件下企业的进入与退出行为研究中,考虑一类 预期现金流相对稳定的实物投资,建立实物期权的单因素模型,并分析利率对投 资决策的影响,说明了考虑利率的不确定性的重要性。随后尝试建立实物期权 的二因素模型,即同时考虑随机变化的预期现金流和无风险利率,对其中一种 简单的模型运用偏微分方程方法给出一个显式的实物期权定价公式,简单分析了 利率的影响。 本文具体内容分为五部分: 第一章绪论 6 ( 1 ) 绪论。包括本文研究背景和文章的研究结构和思路: ( 2 ) 综述完全信息下的实物期权定价理论和方法,在考察实物期权特点基础 上说明实物期权研究不能忽略不确定性的影响; ( 3 ) 主要考察利率随机变化时的实物期权单因素模型,分析利率不确定性对 投资决策的影响,讨论利率的滞后影响; ( 4 ) 无风险利率随机变化时的实物期权二因素模型研究。主要探讨无风险利 率随机变化时单个实物期权的定价模型,对实物期权的定价模型进行进一步的 修正,使实物期权的研究更符合实际情况。 ( 5 ) 对全文进行总结并指出进一步研究前景,说明考虑不完全信息和不确定 状况下实物期权的研究方向。 第二章 完全信息下的实物期权理论和方法 2 1 实物期权的分类 实物期权是以期权概念定义的针对于实物资产投资的选择权,它赋予投资者 在决策时能根据不确定因素改变行为的权利。假设一项项目投资赋予决策者在 未来采取一定投资决策的权利而不是义务,那么这项投资就会有实物期权。企 业投资项目中或多或少都包含一个或多个实物期权,因此对其进行有效的识别 和分类,是使用实物期权的必要前提。由于实物期权的形式和内容比简单的金 融期权复杂得多,人们很难象金融期权那样采用较为统一的分析方法来解决其 定价问题,因此有必要对其进行适当的分类。这一方面可以较好地描述实物期 权,同时对每一类实物期权也可以采用较为统一的分析框架。根据投资项目具 体情况的不同,不同的学者进行了不同的分类。接下来本文按照实物资产的投 资动机和实物期权的投资实践两个分类标准对实物期权进行分类,并介绍每种 实物期权的大概内容。 根据投资动机可以将实物期权分为三类: ( 1 ) 学习期权 使得企业的财务资源能随着市场环境的变化而有效利用。期权价值来源于因 对新的市场信息而做出的灵活措施,如等待、继续投资、放弃项目等。比如当 市场环境或实验结果不好时,制药企业可以停止新药的开发以节约不必要的投 资。 ( 2 ) 增长期权 使得企业可以保持或改善其竞争地位,许多项目的价值不是由直接获得的现 7 第二章完全信息下的实物魍拯理论塑直鎏 8 金流决定,而是由未来的获利可能性所决定的。期权价值是由事后的灵活性实 现的,即赢利潜力随着后续的投资得以实现。 f 3 ) 保险期权 使得企业面对不利的市场环境可以做出灵活调整,以减小损失并降低了未来 现金流的波动性,这种期权是企业风险管理的一种有效方法。期权价值来自产 品产量、生产技术调整的灵活性,企业可以决定是暂时还是永久停止项目。 另外一种比较常用的分类方法是根据实物期权操作实践,从企业的角度可以 做如下分类: ( 1 ) 延迟期权( o p t i o nt od e f e r ) i n g e r 8 0 l l 和r d 裙等,利用实物期权理论对项目的延缓开发权利进行了研究, 他们发现当人们拥有某项目的开发权适当地延缓开发可以为决策者创造价值。 当情况不利时,企业可以延缓投资进行,等待有利状态的到来,这是一种看涨期 权,当条件有利时就执行看涨期权,其执行价格为投资成本。 ( 2 ) 分阶段建设期权( t i m e - t 0 _ 砌l d 叩t i o n ) n i g e o g i s 等人指出投资项目的一气呵成并不见得是好事,边走边看也许可 能更加有利,这样便利于人们在情况不利时对后续投资计划做出相应调整。因 此,在一个建设项目的各个阶段中,前阶段的投入为后一阶段的展开积累了有 用的经验和信息,就象人们用前一阶段的投入构造了后一阶段的看涨期权一样。 比如说有一个待投资的项目,我们可以将其总的投资分成几个阶段。每一个阶段 的投资决策都与上一阶段的投资结果有关系。它的每一个阶段的结果都有相互 依赖性,所以说这种期权是一种复合期权。每一个分步投资就相当于购买了未来 所有分步投资的一个美式看涨期权,这些一连串的投资机会形成了一个复合期 权。有时也叫学习型期权。 ( 3 ) 经营规模变动期权( o p c i o nt oa l t e ro p e r a t i n g8 c 8 l e ) m y e r s 和m a j d ,p i n d y c k 等对此进行了研究,结果表明在经营状况好( 坏) 时, 拥有扩大( 缩小) 经营规模权利的企业比没有这种权利的企业有更高的价值。当有 利状态出现、投资项目的产出和市场比预期的好时,企业可以不同程度地扩大 第二章完全信息下的实物期权理论和方法 9 投资规模,这体现为一种看涨期权,实际是一个扩张期权;当不利条件出现、投 资项目运营不佳时,企业可以不同程度地缩减投资,减小投资规模,以减少风 险,等待有利机会的出现,这是一种看跌期权,实际是一个收缩期权。 ( 4 ) 转换期权( o p t i o nt os w i t c h ) 如果投资项目本身具有动态的可转换的功能,当新的状态和需要出现时,可 以将原来的投资转换为适合新状态的项目,即企业具有相机选择的权利,这种 期权就是投资转换期权,实际上是看涨期权和看跌期权的组合。企业一方面可 以放弃紧缩现有投资活动,另一方面可以通过其它方式实施扩张。两种期权同 时执行时的转换成本可以看作是执行价。这类期权可以看成看涨期权与看跌期权 或看跌期权与看涨期权的组合。 ( 5 ) 增长期权( g r o w t h 叩t i o n ) 自从k e s t e r 对企业增长期权进行较为详细的论述以来,“今天的期权,明天 的增长”( t o d a y 8o p t i o n o rt o m o r r o w 8g r o w t h ) 的口号,在学术界产生了很大的 影响,并对企业发展战略的研究产生了很大的冲击,在理论上为企业价值增长 战略提供了一种新的思路。主要是指早期投资为后来投资提供信息,并使企业获 得未来的增长机会,相当于复合期权。 ( 6 ) 放弃期权( o p t i o nt oa b a n d o n ) 主要由企业放弃投资获得清算引起的。当投资项目的运营很差、前景十分不 妙时,企业可以撒消该投资项目,撤消投资相当于执行看跌期权,显然,可以 撤消的项目价值比没有撤消可能的项目价值更大。这种实物期权相当于是以清 算价值a 为执行价的美式看跌期权,标的物现价v 为项目的现值,期权的内在价 值为m a x ( a v ,0 ) 。 ( 7 ) 创新期权 项目价值主要不在于投资时的直接收益,而在于今后有价值的投资机会。这 种期权的价值实现往往在于初期研究开发的投入,这种期权是美式看涨期权。 第二章完全信息下的实物期权理论和方法 2 2 实物期权理论和方法 1 0 实物期权虽然来源于金融期权,但两者的侧重点不同。金融期权主要侧重 于估价问题,而实物期权则侧重于决策分析与优化问题。虽然决策与优化问题 也需要涉及到估价问题,但为了正确决策,首先必须有一套正确思维和行为方 式,实物期权正是一种指导正确思维和行动的有效工具。一般实物期权的定价 方法可以综合为以下几种: ( 1 ) 直接套用已有的金融期权定价公式 在实物期权的初期研究阶段,主要是把这种思想应用到企业管理决策中来, 利用期权的柔性管理思想,来解决投资项目决策和r & d 研究等方面中,面临外 部不确定性环境时,如何采取灵活的措施来应对的问题。方法也很简单,主要 是找到对应于b s 模型的影响因素包括市场价格、执行价格、无风险利率、波动 率及到期时间等。 首先,与投资项目中所能得到的全部现金流量的现值相对应的是市场价格。 其次,金融期权中的执行价格在实物期权中的等值含义就是投资项目有效期内 的全部圆定成本的现值,它与投资项目的水平、生产经营规模以及与原有生产 经营技术的关联程度有关。再次,到期时间在实物期权中的对应含义是失去投 资机会的时间,而并不是指投资项目的有效时间。到期时间越短,期权的价值 就越低。第四,波动率是一个不可预见性的指标。在数值上是相关现金流入价值 增长率的标准差。在实物期权中,投资项目的未来现金流与其技术及市场等影 响因素的不确定性有关,这种不确定性就相当于波动率,可用项目收益的标准 差来描述。第五,无风险利率是与期权有效期相同的无风险证券的年利率,在 金融期权与实物期权中含义是基本相同的。 ( 2 ) 利用无套利均衡原则构造金融孪生证券 我们知道,导出b s 模型及其推广模型的基础是无套利定价原则。根据该原 则,人们可以通过标的证券与无风险债券的组合,复制一个期权的收益特征。 由于金融期权的标的资产为上市交易的证券,这一原则至少在理论上是成立 第二章完全信息下的实物期权理论和方法 的。但是对于实物期权来讲,其标的资产是不可交易的,因此也就不存在套利的 可能,更谈不上复制的问题。 由于这一本质差别的存在,标准的金融期权定价模型还能用于实 物期权的定价吗? 理论研究的结果对上述问题做出了肯定的回答。例 如,m a s o n 和m e r t o n 指出,在与标准的d c f 方法同样的假设下,可以用推 导b s 模型的方法来建立实物期权定价模型。这是因为企业投资决策的目标在 于使企业价值极大化,故项目评价的出发点在于考虑项目对企业市场价值的贡 献,即如果项目上市交易,会给企业市场价值带来增量。这样一来,只要在资 本市场上寻找到一个与所要评价项目具有相同风险特征的可交易证券,即所谓 的“孪生证券”( t w i ns e c u r i t y ) ,就可用该证券与无风险债券的组合,复制实物 期权的收益特征,利用孪生证券的有关资料作为实物资产价值及其波动率等信 息的替代。显然,能否找到一个合适的孪生证券,是复制孪生证券定价法是否 有效的关键。 ( 3 ) 动态规划方法 一般的期权方法主要适用于欧式期权定价,对于不付红利的美式股票期权, 最佳策略是不提前执行,因此不付红利的美式股票期权的价值应等于对应的欧 式期权的价值。虽然很多实物期权是美式期权,但是可以类似看成是不分红利 的美式看涨期权,如等待期权等。因此,可以用欧式期权方法计算其值。对于 一些不能采用欧式期权方法的美式实物期权,则可采用随机规划的方法计算其价 值。实际上,动态规划方法既可以用于完全市场,也可用于不完全市场。 动态规划法是5 0 年代r j c h a r db e l l m a n 等人提出的, 目前已成为经济分析 和运筹学等许多领域的重要决策方法。1 9 7 7 年i n g e r 8 0 l l 就利用它来确定美式期 权的价值。动态规划法通常将序列决策问题分为两个部分:本期最优决策 值价与随后系列决策结果价值。决策过程首先计算最后期间静态最优函数 值,然后采用倒向递推方法确定每个期间的最优决策及值函数价值。n i g e o g i s & m a s o l l ( 1 9 8 7 ) ,d i ) d t ( 1 9 9 1 ) ,p i n d y c k ( 1 9 9 1 ) 曾对不同的实物期权问题介绍了不 同的动态规划模型。动态规划法的优点是既能处理由市场不确定产生价值变 第二章完全信息下的实物期权理论和方法 1 2 动,也能处理非市场风险情形,因此动态规划法采用的贴现率可以是无风险贴 现率,也可以是风险调整后的贴现率。当采用无风险贴现率时,采用动态规划 法得到的微分方程与采用无套利方法得到的结构非常接近。动态规划法具有很 多其他定价方法所没有的优点,首先它不需要市场完全性假设,定价过程还可 以结合投资者的效用函数;其次,对很多复杂的资产价格过程,如扩散跳跃过 程,均值回复跳跃过程,可以采用简单又直观的格子点方法来处理。因此动态 规划法目前是一种处理复杂实物期权的重要方法。 2 3实物期权研究的难点 ( 一) 实物投资的复杂性 期权是一种衍生产品,其价值是以标的资产的价格为基础的。金融期权的标 的资产是金融资产,如股票、债券、货币等。实物期权的标的资产是各种实物 资产,如土地、设备、石油等。金融资产仅仅代表对实物资产的要求权,本身并 不创造财富。金融资产具有流动性、可逆性、收益性和风险性,因此金融资产 容易标准化,便于形成市场性、规模化的连续交易。实物资产是创造财富的资 产,不是完全可逆的,时间维度对实物资产影响重大。 实物投资部分或者全部不可逆,也就是说投资的初始成本至少是部分沉没 的。实物投资具有不可逆性是因为:第一,资产具有专用性。资产专用性意味 着资产需求方对于该项资产的评价具有更高的致性,资产拥有者如果降低该 项资产的评价,其他需求方可能同样也降低了对该项资产的评价。第二,信息存 在不对称。买卖双方会因为信息不对称导致“柠檬问题”,使得转售价格低于 购买成本。第三,政府管制。政府管制可能会使投资者难以变现。此外,实物 投资具有不确定性。决策根据掌握的信息可以分为确定性决策和不确定性决策。 不确定性决策又可以分为“风险决策”和“纯不确定决策”。确定性是指投资者 明确知道未来收益的情形。风险决策是指投资者能够估计和预测未来事件发生 第二章完全信息下的实物期权理论和方法 1 3 概率的状态,进行最优选择作出的决策。“纯不确定决策”是指投资者在无法 估计和预测未来事件发生概率时作出的决策。实物投资常常需要在不确定的条件 下作出决策。为了应对不确定的决策环境,实物投资应该保持一定的战略灵活 性。投资者在选择投资时机上具有一定灵活性,投资者拥有的灵活性越高,投 资价值越大。投资者在项目运营期内可以根据经济环境的变化对项目作出调整, 以提高项目价值。 鉴于实物投资的复杂性,实物期权相比金融期权则更为复杂。 ( 二) 实物期权定价的主要问题 实物期权与金融期权相比具有很多不同特征,这些特征决定了实物期权定价 的特殊性。虽然实物期权研究的最终目的不是为了定价,但是定价问题是一个 研究过程中额一个重要环节,很多时候正是定价的问题影响了应用和研究,只 有很好的解决了定价问题,才能将实物期权思想更好的用于实践。下面从实物 期权的基本资产特征、信息获取难度及估价复杂性三个方面来说明实物期权定价 存在的主要问题。 ( 1 ) 实物期权的基本资产价值特性 实物期权定价的最主要问题是其基本资产的不可交易性。有些研究者已经就 这个问题进行了探讨,并提出了相应的解决方法,如将期权定价公式进行调整 后进行相关研究;运用分解法,通过对标的资产价值因素的层层分解。总能找 到一个( 些) 最下层次的外生变量,其波动服从某个已知的随机过程,然后应用 伊藤定理或数值方法可以求出标的资产的价值,将其代入期权公式就可以对标 的资产不可交易的实物期权进行定价。( 参见文献f 1 0 ,1 4 1 ) 有关实物期权基本资产的第二个特性是其价值分布问题。在金融期权定价 时,我们通常是假定基本资产遵循几何布朗运动。对实物资产,采用均值回复 过程来描述其价值变动可能更为恰当; 用均值回复跳跃过程;如果再深入一些, 如果进一步考虑市场突发情况,则应采 将实物资产的持有利得、市场利率等因 素也考虑进来,则应采用多因素的均值回复跳跃过程,因为一般的研究都是假 定市场利率为常数,而实物期权的期限一般都较长,故将利率的变化考虑进来 第二章完全信息下的实物期权理论和方法 应该更合乎实际。本文就是主要考虑了利率的不确定性对实物期权的影响。 实物期权基本资产的第三个特性是其波动性问题。一般市场上交易的金融期 权的执行期较短,因此基本资产的波动率可以近似看成是常数,而实物期权一 般涉及期限较长,如果仍然将它当作常数看待,可能不符合实际情况。 ( 2 ) 实物期权定价相关信息的获取难度 在金融市场,金融产品的集中交易特性及完善的交易系统和交易制度,投资 者可以及时准确获取市场交易的相关信息。这为准确及时确定期权的价值提供 了坚实的物质基础。然而在实物期权领域,实物期权定价所需的相关数据大多是 不可获得的。有时虽然相关数据可以获得,但它们并不“纯净”,往往包含其 它不可分离的因素,利用这些数据代入实物期权定价模型,难免得出错误结果。 ( 3 ) 实物期权定价的复杂性 实物期权定价具有高度的复杂性,往往需要很高的技术和技巧。在实践中, 大量的实物期权依附于投资项目或计划方案。应用实物期权方法时首先必须将这 些期权识别出来,然后将它概念化,再根据影响期权价值的不确定类型确定定 价模型,最后再根据模型估计相关参数和收集输入信息。有的实物期权定价必 须求解复杂的微分方程,而有的实物期权定价还要考虑多个期权之间的相互作用 等。所有的这些都需要运用大量的数学和计算机知识。 第三章单因素模型下的实物期权决策分析 大多关于实物期权的研究决定主要是在假设贴现率为常数的情况下,考虑收 入的不确定性( 即将预期现金流作为标的状态变量) ,一般假设预期现金流服 从一定分布,满足相应的随机微分方程,然后建立与预期现金流有关的未定权益 的偏微分方程,利用期权理论进行相关研究。但是实际上对于有些投资决策来 说,收入或费用是相对稳定的,即预期现金流是相对稳定的,投资贝l j 主要由利 率的不确定性所决定,例如一些关于耐用机器或设备的投资决定等。因此,当 利率不确定性对于投资决策是一个关键因素时,我们考虑建立实物期权的单因素 利率模型。 3 1 均值回归模型 首先我们采用一般的均值回归模型,即c i 胼率模型,假设利率过程为 d r = 尼一r ) d t + 盯加仰7r ( o ) = ( 3 1 1 ) 其中是决定回归速度的参数,口是即期利率的长期均值,矿是利率过程的波动 率,r 是即期利率,d 彤是标准g a u s s - w i e n e r 过程,这里,口,口都是严格正 常数。由此我们可以得到一个在到期日t 支付为1 单位的无违约风险的零息票 债券p = p ( r ,? ) 的偏微分方程为( 参见文献【2 1 】【2 2 ) ;卉等+ 础一r ,筹+ 等一如筹一r p = o c 。- z , 其边界条件为p ( r ,t ,t ) = 1 ,由于方程( 3 1 2 ) 的前三项来自i t 6 公式,表示债券 1 5 第三章单因素模型下的实物期权决策分析 1 6 的期望价格变化, 因此债券的期望回报为r + ( a r 箬;) ,其中a r 表示利率 变化与最优投资财富之间的协方差,a 表示利率风险的市场价格或市场风险参 数。令r ,= r + q r 筹刍) ,则( 3 1 2 ) 可表示为: 其中 e d p 】= r p 出 由c o x ( 1 9 8 5 ) 以上债券的价格可表示为: p ( r ,# ,t ) = a 7 ) e b ( 。r 丁) ( 。( 3 1 3 ) 邶,: 两篙嵩篙面r 驯一 即,t ,= 两若篙 u = 【( 七+ a ) 2 + 2 仃2 1 1 2 在风险中性概率q ( 或鞅测度0 ) 下,定义韶为t = o 时刻的期望,则到 期日为t 的零息票债券在= 0 时刻的价格也可表示如下: p ( r ,t ) = 碍【e j r ( s ) 幽1 = a ( o ,t ) e b ( 。一t ) r ( o ( 3 1 4 ) 而且在风险中性概率q 下,关于风险调整过程的即期利率可以改写为如下 随机微分方程: d r = p 一( a + 南) r d + 口伽i 矿( 3 1 5 ) 这里的d 是q 下的标准布朗运动。 由c o x ( 1 9 8 5 ) ,在以上均值回归模型下,任何和利率有关的未定权益f ( r ) 的 价格满足以下偏微分方程: ;卉豢+ 硼一r ,筹+ 筹一灯筹一r f + e :。 c 。1 。, 第三章单因素模型下的实物期权决策分析 1 7 这里e 表示未定权益的现金支付率。对于无违约风险的债券a = o ,而对于一 个永久性期权( p e r p e t u i t y ) ,由于每年支付1 单位的现金流,故a = 1 。因为永 久期权到期日很长,即丁一o 。,则筹一o 。所以方程( 3 1 5 ) 可写成: 豢州) 筹山等一+ t = o ( 3 ) 我们看到在q 测度下,一个到期日为t 的零息票债券在t = o 时的价值就 是1 美元的最终支付贴现到现值后的期望值,这个期望是在鞅测度下取得的,是 关于风险调整后的利率过程的期望。这里的风险调整过程通过加入风险金使利 率过程的漂移项减少,则风险调整后的漂移项就是【枷一( a + 七) r 】。虽然利率 风险金加入进来了,但是它们却不能观察或测量到。因此,为了简化问题,这 里的风险因子项a 必须是特定的值,而且,风险因子项是由诸如市场上不同代 理人的风险厌恶过程所决定的,如果令a = 0 ,则隐含着考虑市场上集合风险厌 恶的假设。所以有时为了简单考虑,可以假定a = o 。 在以上框架下,我们可以定义未定权益f ( r ) 的值为: 聊) = 霹盼舶油d = z 。咖内如 ( 3 ) 则有 f 7 p ,= 昙z 。p cr ,。,t ,d t = z 。掣d t = 一a ( o ,t ) b ( o ,t ) e b ( o ,) ( o 如 显然f ( r ) 0 ,说明随着利率的增加,相应的未定权益的价值会减少,即当利 率升高时,投资价值会降低,当利率降低时,投资价值会增加。 3 2 无均值回归模型 3 2 1 模型建立 下面我们考虑均值回归模型的一种特殊情况,即无均值回归的模型,这种模 第三章单因素模型下的实物期权决筮分近 1 8 型相当于有回归模型的一个特例,即七= 0 的情况,这样可以使问题简单化。设 利率过程为 咖= 口石d 这里口常数,其相应的风险调整过程为 d r = 一a 帕+ 口诉d 同样由c o x ( 1 9 8 5 ) ,与利率有关的利率未定权益满足的偏微分方程为 豢+ 等埔筹一+ a = 。 涔。 互o 百万+ 否f a 7 否f 一f + g 2 o ( 3 2 1 ) g 是未定权益的现金支付,和前面假设一样每年1 单位,即e = 1 ,a 表示利率 风险的市场价格。 在我们考虑的实物期权框架内,假设到期日很长,则筹一o ,所以方程可 改写为 等蜥等一+ ,= 。 慨。固 即 ;盯2 等一a 等一f = 一; z 固 这样方程( 3 2 3 ) 是一个线性非齐常系数微分方程,其通解f ( r ) 由基本解 目( r ) 和特解y ( r ) 组成,即 f ( r ) = p ) + y ( r ) 其经济意义解释如下: 如果状态变量r 没有任何规定或限制,y ( r ) 可解释为收益的期望现值,而 f ( r ) 就是r 有了一定规定或限制时的收益的期望现值,因此( ,) 就代表额外控 制的价值。在我们讨论的内容中,障碍控制由投资或不投资所决定,做出项目 投资决策的主体假设是企业。由( 3 1 ) 节分析可知,当利率较高时,投资价值减 少,可能会减少投资甚至不投资;当利率较低时,投资价值增加,可能会增加 投资。所以我们设状态变量的一个低的临界点是,以及一个高的临界点是f , 第三章单因素模型下的实物期权决策分析 1 9 则 1 ,则曲( o ) = 一p z 6 :竺鼍掣 o ,g o ,显然投资期 权是利率的减函数,不投资期权是利率的增函数。在利率范围( o ,_ ) 内活跃企业 会继续投资,持有放弃期权;在利率范围( ,o 。) 内,不活跃企业不会执行投资 期权,而是继续持有。 1 投资期权 假设在一个特殊的投资项目中,利率不确定性对投资决策是一个关键因素, 这时一个不活跃企业拥有一个投资期权( 这里不投资机会不考虑) ,只要决定是 进入市场,还是保持不活跃状态。如果利率降到一个低的水平,企业就可能改 第三章单因素模型下的实物期权决策分析 2 1 变投资期权,并支付一定投资费用_ 来进行投资,假设其投资收益和永久期权 一样为一个单位。如果企业以后某个时间决定退出不能全部收回投入的成本, 则这个费用就是沉淀成本。则相应的投资策略可以表示为: + ,d ( r ) 一f ( r ) 利用价值匹配条件和平滑粘贴条件,最优投资策略为: 7 + 国e 垃:,。a ( ) e 删( 3 舢) j o 6 岛e 蜒 eb ( ) a ( ) e b ( ) 如 ( 3 ,2 1 2 ) 这里价值匹配条件( 3 2 1 1 ) 的经济意义就是执行投资期权的收益必须等于所需的 费用,否则就存在套利。而对于平滑粘贴条件( 3 2 1 2 ) 则说明期权价值函数的导 数在执行前后的价值必须相等,不可能发生突变,即采取行动前后的边际效用必 须是一致的,否则,随着利率的上升,这个投资期权的价值就有可能上升。 通过求解方程( 3 2 ,1 1 ) 和( 3 2 1 2 ) 应该可以求得最有执行的利率点和, 但该方程无显式解,只有用数值方法求解。如果将上述两个方程化简还可得到: 了:f ( ) 一掣m 1 3 ) 但是这是非线性方程,还是不好求显式解,故可以用数值方法求得低的临界点上 。对于一个不活跃企业,只有当利率运动到达这个临界点时,才会投入所需的固 定费用,执行投资期权,从而获得类似永久期权的收益。 2 不投资期权 假设一个活跃企业正在运行中,其收益就是支付为1 单位的永久期权的值。 如果利率开始增加并且非常高时,企业就可能l 临时停止甚至放弃投资项目。不 妨假设一旦利率到达一个高的临界点时,企业就放弃项目,还可以收回部分成 本,而且不会产生别的费用。则相应的不投资的策略可以表示为: f ( r ) + d d ( r ) , 第三章单因素模型下的实物期权决策分析 这里羔表示可以追回部分成本,是一次性付清的,因为假设放弃没有别的费 用,故是正的,且 7 。令o = 7 ,显然0 a 1 ,则n 表示投资可逆 的程度,若a = o 说明投资不可逆,只能执行一次;若n = 1 则表示完全可逆, 那样就产生一个流动期权,可以在投资和不投资之间连续转换。 下面同样根据价值匹配条件和平滑粘贴条件得到不投资的最优策略如下: a ( t ) e 一丑( 。声痢+ 岛e ”= ( 3 ,2 1 4 ) j 0 f一8 ) a u ) e 一且( f 斑+ n ( b e d _ = o( 3 2 1 5 ) j 0 同样可以用数值方法计算高临界点f 和岛的值,或者可以转化为一下一个方程 再用数值方法求解: 王= 删一掣 ( 3 2 。1 6 ) 那么对于一个活跃公司来说,只有当利率升高达到临界点于时才会停止投资, 否则就不行动。 3 3投资期权与不投资期权的组合策略 如果我们同时考虑企业的进入和退出的组合决策,将投资和不投资放在一起 考虑,则任何一种状态的企业拥有一个关于另一种状态的看涨期权。例如,如 果一个不活跃企业执行投资期

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论