




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1.3弧、弦、圆心角的关系,(1)圆是轴对称图形,它的对称轴是过圆心的直线。,一、,圆的对称性如何?(导航17页请你思考1),(2)圆是中心对称图形,它的对称中心是圆心。,二、想一想,圆绕着它的圆心旋转多少度就能与原图形重合?,(3)结论:圆绕圆心旋转任意一个角度都能与原图形重合,这是圆的旋转不变性。,什么叫圆心角?(导航17页请你思考2),圆心角顶点在圆心的角叫圆心角。(如AOB).弦心距过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。(如线段OD).,根据旋转的性质,将圆心角AOB绕圆心O旋转到AOB的位置时,AOBAOB,OAOB点A与A重合,B与B重合,O,A,B,O,A,B,A,B,A,B,三、,弧AB与弧AB重合,AB与AB重合,如图,将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么?(导航17页请你思考3),弧、弦与圆心角的关系定理(),四、说一说,五、议一议,定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?,等对等定理,不能去掉.反例:如图,虽然AOB=AOB,但ABAB,弧AB弧AB,定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?,推论,在同圆或等圆中,如果两个圆心角,两条弧,两条弦(4)两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.,如由条件:,AB=AB,OD=OD,AOB=AOB,在这里可以不说“在同圆或等圆中”吗?,如图,AB、CD是O的两条弦(1)如果AB=CD,那么_,_(2)如果,那么_,_(3)如果AOB=COD,那么_,_(4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,四、练习,OEOF证明:OEABOFCDABCDAECFOAOCRTAOERTCOFOEOF,证明:,AB=AC,又ACB=60,,AB=BC=CA.,AOBBOCAOC.,A,B,C,O,五、例题,例1如图,在O中,,ACB=60,求证AOB=BOC=AOC,巩固深化,在同圆或等圆中,一弦是另一弦的二倍,那么它所对的弧是另一弦所对的弧的二倍吗?试画图分析反之呢?,如图,AB是O的直径,COD=35,求AOE的度数,解:,六、练习,七、思考,(2)如图,圆O的两条弦AB、CD互相垂直且交于点P,OE垂直于AB,OF垂直于CD,垂足分别是E、F,且弧AC=弧BD,试探究四边形EOFP的形状,并说明理由。,2、如图,点O是EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D。求证:AB=CD,证明:作OMAB,ONCD,M,N为垂足。,推广:若将上题中的点O看作是沿着EPF的平分线运动的。在EPF的每边与圆O有两个交点的时候,是否都能够得到上题的结论?,七、思考,(4)如图,已知AB、CD为O的两条弦,弧AD=弧BC,求证AB=CD,(5)如图,已知OA、OB是O的半径,点C为AB的中点,M、N分别为OA、OB的中点,求证:MC=NC,(6)如图,BC为O的直径,OA是O的半径,弦BEOA,求证:AC=AE,证:连结OA、OB,设分别与CD、EF交于点F、GA为CD中点,B为EF中点OACD,OBEF故AFC=BGE=90又由OA=OB,OAB=OBA且AM=BNAFMBGNAF=BGOF=OGDC=EF,圆的对称性,圆的中心对称性(圆是中心对称图形),圆心角、弧、弦、弦心距之间的关系,四、总结,思考题,证明圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘阴县中考考试卷及答案
- 化验员中级考试试题库及答案
- 茂名初二月考试卷及答案
- 湖北防疫员考试题及答案
- 2025锦州社区考试真题及答案
- 陇南一中考试题目及答案
- 标志设计协议书与标识系统设计合同5篇
- 高二新乡期中考试试卷及答案
- 赵一鸣项目经理考试题目及答案
- 2025年一级消防工程师《消防安全案例分析》考试真题及答案解析
- 2025中医技能考试题及答案
- DB32T 5187-2025口腔综合治疗台水路卫生管理技术规范
- 福建福州台江区社区工作服务站专职招聘笔试真题2024
- 2025年税务局遴选面试题及答案
- 双碳知识培训教学课件
- 成都市金堂县教育局所属事业单位2025年下半年公开招聘教师的(64人)考试参考题库及答案解析
- 2025年网格员考试真题及答案
- 铁路工作安全培训课件
- 2025年小学心理健康学科新课程标准考试测试卷
- Q-JJJ 9002-2025 铁路建设项目安全穿透式管理实施指南
- 第4课 吃动平衡 健康体重 课件-2024-2025学年人教版(2024)初中体育与健康七年级全一册
评论
0/150
提交评论