外文翻译--轻量级丝杠作动器设计在便携的机器人的应用_第1页
外文翻译--轻量级丝杠作动器设计在便携的机器人的应用_第2页
外文翻译--轻量级丝杠作动器设计在便携的机器人的应用_第3页
外文翻译--轻量级丝杠作动器设计在便携的机器人的应用_第4页
外文翻译--轻量级丝杠作动器设计在便携的机器人的应用_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

轻量级丝杠作动器设计 在 便携的机器人 的 应用 机械设计报 凯文 W.霍兰德 托马斯 G.唐 一个便携机器人是直接与它的用户联系的一个受控和开动的设备。 同样 , 也要求 这个设备 必须也 是便携 的 ,轻量级 的,最重要的是安全的 。 为了 达到这些目标。标准丝杠的设计通常 不能很好的按要求 执行这些。典型的丝杠有 很 低投球角度和大 的 半径,从而产生 很 低 的 机械效率和 很大的重量 。 可是 ,使用 文本中 的设计程序 , 效率和重量 是被 改进 的 ; 因而 可以 产生 一种与人 的 肌肉相似 的丝杠系统。例子 中的 问题 说明一个可行性的丝杠设计应该是 277 的功率质量比 ,接近 驱动它的马达,即 312W/kg,并且机械效率 为 0.74和最 大动能 到 11.3 kN/kg的丝杠设计。 1引言 在美国 , 有五分之一的人有不同形式的残疾 , 这些人当中, 61的人患有感觉或身体残疾。在老年人 中 , 8 到 19 是 步态失调。许多残疾人可以 独立的 受益于某种形式机器人 的协助 。 一个便携 机器人是一个 被 计算机控制和驱动 的 装置,是直接接触用户 的 。这种装置 的目的是 增强 用户的行为能力 。在 病人 治疗 期间 , 它可以用于训练, 或 是 仅仅当作一 种 协助 病人完成日常生活的装置 。 便携 的含义是指 机器人必须携带方便,重量轻,而且安全 是最 重要的 。相比之下,工厂车间 的 机器人是没有这些 功能的 ,因此,要简单修改现有的技术是不可能 实现的 。 设计便携机器人的标准方法 有三大局限性 ; 1低电池功率密度 ; 2电机 的 低 强度质量比; 3重量和安全 性 的机械传动系统。 这些 工作 的目的 是审查丝杠驱动器 的设计过程 ;结 果显示 在 局限性 第三项方面有了重大改进, 即,重量和安全性的机械传动系统。 2 背景 有 趣 的是, 在 便携机器人学 领域 的研究已经超过了 过去十年 的 增长。最近 ,浪涌的 利益可以归因于电子小型化、微处理器能力和无线技术扩散的推进 。 提高 便 携计算机控制 设备 的能力 的可行性 是可以实 现的。 然而,除便携式的计算平台的可及性之外,必须 谈 及物理机制的问题。在便携机器人发展 中, 主 要的问题 是 强度质量比 、重量和安全。 有 多少 可利用的动力 可 完成 机械功?机器人设备 有 多少 额 外的 力给 人? 还有 , 如何 转移这 些动 力和怎么 一直 维护安全 等 ? 用户和开动的机器人 之间的安全互作用 在便携机器人 设计 中是一个首要问题 。 一个便携的机器人系统的目的 是 将操作员 通过 存贮设备 获得的努力和 能量 抵消 ,即,电池、燃料电池和空气坦克。作动器 的 效率和整个系统 的 重量沉重影响分享在操作员和机器人之间的工作负担。 在很多情况下,机器人加给用户的 额外力量 , 能多完成 一项 测量 任务。这意味着机器人 不仅 必须增添操作员的能力, 也必须 补尝它自己另外的重量。 2.1 作动器 的 比较 。 很 多机器人作动器 被比作成 人的骨骼肌 的 标准。 设计师 了 解 他们好 的功率强度比 和 优秀的 强制生产能力 就是为了动作器与骨骼肌相比拟 。为了匹配骨骼肌的性能, 重要的是 知道其中一些措施。不幸地 是 , 生物文学中的普遍性 是 :被测 量的肌肉 参数是 变化繁多 的 。虽然报告 参数 有一个宽 的 变化,这些 参数一直能 给生物材料 行为 标度的感觉。制成表的数据和 几个原始估计数据 被用于描述人的肌肉表现属性和结果 如表 1所示 。 表 1: 作动器比较: 通过 机械效率 ,势能,和校正动能对 各种各样的作动器类型 进行比较: 允许 与 有效能的运用 直接进行比较 。然而,在便携机器人作动器的发展 中这两个参量需要得到审查 。考虑 到 所有作动器在 100%效率 中运行 ,然后整个小组能直接地由他们各自的功率强度比进行比较 。 可是 ,如果 势能中的动力 被提供给每台作动器,由于他们各自 的 效率 仅仅是输出 一小部分 动 力。所以,适当地比较上面被描述的作动器,他们校正的 势能 必须计算 ,即: (1) 机械效率和 Pwt是原始的 功率质量比 。 对各种动作器演算的 结果如 表 1所示 表 1的内容是从文献或基于那些文献的估计中获得的 。 dc马达的 参数 是 :Maxon RE40马达 。 传动箱组合 的参数 在 Maxon 2004编目 中能够 找到。一台电系列有弹性作动器的 参数 用于估计这些参 数 。然而,一个 一般 大小的丝杠系统可能有更好的 强度质量比 , 因为 它 有很高的负 载 能力 ,并且 有很 低的重量。对于 McKibben样式 的 空气肌肉, 从 各种各样文 献中发现了 描述它 的 相关 方法。 比较中显然显示的 是校正 功率质量比, cP , dc马达的参数 ,空气肌肉 和 人的骨骼肌是 都是简单匹配的 。然而, 马达上一旦加上额外的硬件 ,它的 执行力会 极大减 小 。 基于动作器的重量, 如果能 修改一个不是很大的 dc马达重量的机械传动系统,则 它接近于 人的骨骼肌的功能可 能 会实现 。 3丝杠设计 如上所见 , 当一个典型丝杠系统 与其他便携机器人作动器 在 概念 上进行 比较 时,它的性能是有限的 。 产生这种 低性能的主要原因是 它的 机械效率 很低 。 如果 在一个标准丝杠系统 中使用 大约是 =0.36的摩擦系数,会有更好的润滑效果。 相反,典型的球螺丝系统有非常好机械效率。 滚 珠轴承的滚动接触对这个系统的摩擦作用 会保持很 低。然而, 效率虽然有了改进 ,球螺丝作动器的 cP t参数 仍然低于那骨骼肌, 这是因为 球螺丝系统的重量 很大 。 如果 改进球螺丝的 cP 性能 , 那么重量的减少就可以实现了 。 机械设计学报 图 1 丝杠 外形 ; 主角 l 在 一个 单 一螺旋螺丝 中是等效的 用于设计 围拢丝杠的基本数学也适用于球螺 丝系统。这两 个 机械传输之间的 主要 差别是他们的摩擦系数。在以下部分 会考虑 影响丝杠重量和机械效率 的 设计参数,并且对 它 的cP 进行改进 。 3.1丝杠 外形 在图 1显示的 是普通 丝杠 的 基本 外形 。丝杠的关键参量是主角 l,螺丝半径 r和前置角 。主角 l是螺丝每次 改进达到的位移数量, 一个高精度螺丝有非常 小 或 非常好 的 主角 。在图 1的正三角形显示 的 螺丝 的唯一一次改进被剥开的构造 。前置角 代表螺纹的斜面或倾斜 度 。 三角 的基础 是螺丝轴的圆周,三角 形 的右 腿 是它的主角 , 螺线螺纹的弦 代表 路径长度。 并且在正三角形 中 看 出使螺母 举 起负 载 的强大的力 。 负 载的力量显示为 F ,螺丝的扭矩 强度 是 F ,在螺丝螺纹 上 的正常反作用力是 N,并且摩擦力是 N。从这张图 中 , 举起 的扭矩的 等式就可以是: (2) 3.2 对 R。 还 考虑,丝杠的 外形 在图 1可以显示 主角 l是由螺丝半径 r和前置角 描述的。这些可 改变 量 之间的关系 是: (3) (4) 公式 4的 意思 是 r、螺丝半径和 ,前置角, 都 是 需 要 螺丝 主角 l的 。这意味着在 r和 之间 存在 一个连续的关系。虽然存在这个连续的关系,多数螺丝系统 还是被 设计 成 非常小 的 前置角。 从 首选螺丝大小的 经验来看 ,虽然各自的直径 都在 变化, 但 前置角 都小于 3。 在公式 4种显 示 对所 有螺丝主角 的需求 ,各种各样的半径 都 可 以 使用。 这个意义在于 螺丝半径 r的变小 ,螺丝的重量 是通过 r2减小的 。因此, 要 补尝小螺丝半径, 必须考虑前置角 这个参数。 前角, 图 2丝杠系统机械效率:遮蔽一部分的图表多数 是丝杠 的典型设计区域。 是小的,半径大,重量大,并且效率是 较 低的。在图表的未遮住的区域设计, 是大 的 ,暗示更小的半径、更低的重量和 更 高 的 效率。 3.3效率对阿尔法 。 对于一个便携机器人 的 设计,不仅丝杠作动器的重量 是一个重 要问题, 而且 作动器的效率也是 非常 关键的。如上所述,螺丝半径的减 小可以使动作器的重量大大减小 。然而, 要 减小 螺丝半 径,必须增加前置角 , 以保持 恒定的 主角 。当看 公式 2时 ,可以 看 出 要求 承受负载的 力 矩 Fw,取决于两前置角 和 摩擦系数 . 影响 螺丝效率 的是 前置角和摩擦系数,图 2显示对摩擦系数 _和前置角 _的冲击 在 于 丝杠系统的效率 (5) 在图 2的每条线 是基于 摩擦系数不同的 参数 。几份 普通 的工程材料 作为 例子给读者 一个在丝杠系统中能有不同物质或涂层的作用的感觉 。这个图表示,当前置角增加,机械效率 就增加 ; 或者至 少 到达一个峰值。 理论上, 选择 最大效率采摘角度是有利的。 一个丝杠系统在高效率运行时需要使负载力矩达到最小 Fw。 在高峰值 效率发生的角度可以取决于 与角度 效率 有关的参数 ,结果 是可以看到的。 (6) 虽然一个高前置角可能 提高 效率, 但 它 也 可能导致 反驱动 系统。一个 反驱动 系统是 一种负 载 力矩, 没有 力 矩协助 的情况下,螺丝可能 自转,因而允许 负 载 自我降低 。 反驱动 丝杠 不适合应用于 汽车起重器,但是 可以应用于 便携机器人 当中 。 因此反驱动 的前置角 是: (7) 不管 产生多么 高 的负 载力量 ,多么 低 的 摩擦系数系统 , 前置角和摩擦系数 总 是影响这 些条件 的 ,例如球螺丝, 反驱动 是一个必然结果。 4 实用考虑 理论上,如 先前的文献 所显示 ,是希望 螺丝半径 r减小的 , 甚至 到一个几乎微观 尺度 。然而,从设计和制造业方面 来讲, 这不是一种实用 的 解 决方案 。虽然从重量和效率的角度 来讲 小螺丝 的 直径和高前置角 是极其重要的 , 但 他们可能不允许设计师适应物理系统的力量需要。例如轴向产生,压缩折和机制困境 都 需要被考虑。考虑 到单 一 的 超薄的螺丝也许是轻量级 的 ,它 可 能没有一个系统所需要足够的负 载 能力 。 但可以 使用 单 一 的, 或几个螺丝, 就会有足够大的负载能力 。用几个小螺丝 承受 大载 荷是没有重量优势的 , 作为因计算一个螺丝断面产生的重量和压强 。然而,使用几个小螺丝 承受 载 荷 可能允许对高前置角的持续 使用 和 在高效率 中运行 ,甚 至 在 很高负载 。通过推挤丝杠原材料物产极限,可以达到 轴向很高的负载 。这种 工作 方法 的好处在于 一个紧张系统比它压缩轴承更好运作 的 系统。 当考虑到减小 一个 既长 又细的 螺丝 的负载时, 类似 于 McKibben作动器甚至人的肌肉, ( 丝杠作动器能被设计负担仅紧张装载 ) ,因而消 除 共折的考虑 。在一个便携机器人 中 创建紧张驱动系统不一定意味着需要一个对抗性。实际上, 与一个 协助机器人 相比 ,残疾人在 做单一的直接动作时,肌肉存在 弱点,因此, 这些人是非常需要动作器帮助的。 对于 那些 推挤螺丝半 径 和因 此导致 前置角 的极限超过 最大 效率 的设计师,摩擦 极 限角度多 少 是 可以 倾斜的。 所有这些 的物理解释是系 统捆绑 或锁 , 由 导出的公式 2可以 看见。一 个由公式( 2)导出,可以 产生以下 关系 (8) 除被列出的实用考虑之外, 还 可能 存在着 许多其他问题。包括扭转力僵硬或 屈服力 甚至热扩散 等 。这些因素中的每一个 都 是重要的并且 都需要我们考虑。可是 , 这个练习 的目的 是展示 选择一个 设计或选择螺丝系统 的 典型方法。这个选择方法的好处是 可 直接适用于一个便携机器人系统的设计。 5 例子 中的 问题 展示一 份 粗 糙 设计 报告 ,考虑高峰距小腿关节扭矩在 到一个有能力装载 80 kg的个体 并且 是 0.8 Hz的 跨步频率 期间的连接扭矩 。在步态期间的脚腕扭矩 峰值 大约 是 100毫微米。这个峰 值 大致 发生在 45%的 步态周期。步态周期 是指 一只脚跟 的停止到这支脚跟下一次停止的时间 。脚趾 是承受另一只腿重力和开始摇摆的点 。 摇摆阶段 的判断是 步态再 次 安置脚回到脚跟 停止 位置 时,然后 下 一 个步态周期开始。 例如,让我们考虑修造 一个 脚腕步态协助丝杠作动器。我们假设 协助水平在 30%左右和到小腿关节是 12厘米的力矩臂。 表 2作动器 问题 比较 : 丝杠设计 I和 II与 人的肌肉 的 效率 比较 , 对势能的比较 ,校正 势能和动能的 措施的 比较。 这些 参数都可以根据自己的个人经验并且在合理的范围内进行修改和变化。参数 和 可用的 参量 接近于 Maxon马达 , 即 RE40, 这个例子中, 主角长度的范围 已经确定了 ;它的范围可以是 解 决设计两 个丝杠 的 问题 :第一个设计 问题是解决最大效率 。假设 是 2 mm和 =0.05,螺丝在 =43.5、半径是 0.34mm 的地方 产生的效率是 90%。这样 小的 一条半径, 需要多个螺丝承受负载 。即使如此, 估计 作动器 的势能 是 280 W/kg 。通过马达重量和预测的传输系统, 划分需要的功率 峰值就可以得出势能的大小 。我们 从 以前的工作 知道了 ,辅助组分的重量成比例 可以减小螺丝和螺钉的重量 。 第 二个设计,丝杠 II,从商业供营商 得到可利用的维度 。 螺丝 的 =13.6和 0.82的效率 。 更 大一些 的维度 也可行 , 动作器的势能最好是 277 W/kg。为了达到比较的目的, 这个例子出现的 问题结果 制成了表格 。表 2显示两个丝杠设计 方案 的数字结果。这些 参数 与 先前的 dc马达 参数 和人的骨骼肌的估计 值进行 比较。 通过例子,动能大小是基于力的峰值进行计算的。 6 讨论 在 分析解决最大效率的方案上 ,丝杠设计 I显示 了 一个 单 一小半径螺丝永远不会处理 所要求的负 载。 可是 , 多个 螺丝 同时 平行执行那项任务 会有 同样高 的 效率。 虽然 使用典型的技术 不容易制造出 一个 0.34 mm半 径 的 螺丝, 但用这种方法 是 可以实现的(即 ,使用多个螺丝产生高效率) 。 要设计一个特殊的丝杠,效率是没有极限的。 丝杠设计 II显示 , 有 一种可行的解 决方案可以解决脚腕的问题, 校正 功率质量比参数使其 非常接近 于 人的肌肉。使用一种相似的方法,球 形 螺丝机制能有益于 它的 表现 ,一般方法是 创建 一个驱动的背面, 低重量和高效率 的 螺丝系统 可以使基于 dc马达的动作器的便 携机器人应用 有 一种 有力 解答。 图 3 原型作动器,高效率丝杠 前面提到,一台便携机器人作动器不仅 要 有好 的执行 能力, 而且还要对它的用户有一定的 安全 性 。 在考虑安全方面 时 , ( 驾驶 )是 便携丝杠作动器 所需要的 。 ( 驾驶 ) 允许 操作者任意安装没有动力的螺钉,因而使它的 阻碍减到最小。另 一方面 , 在螺丝的末端设计一块闲置的部分以防止马达和用户受到损坏 。对人的损伤 可以 通过安置螺丝的末端范围在 用户 的生理 安全 极限内 来 避免 ,即一旦遇到危险强度,可以得到短期的脱离 。所有这些方法 都需要得到 重 点 考虑,并且应该 在 设计过程中 早期解决 。安置机械部件必须包括特别 的 防备措施。 防备措施必须超出软件或控制器范围 ; 因此,在机械设计 中 应该包括他们。保证 用户 的安全是在 设计 所有协助机器人 时应该是 最优先考虑的事 , 我们的 实验室也调查了便携作动器的其他类型。看图 3。 这些技术 帮助 我们 保持 设备的 整体大小和重量 打 到最低。 7 结论 一台便携机器人作动器必须有好 的功率势能比 ,好 的 机械效率, 好的强度质量比 ,并且一定是安全的。对于一个 具有好的功率的 dc马达,改进它力量 的唯一方法是 增加传动系统。传统上,这 种方法 导致了 dc马达作动器 功率质量比的增加以至于它的执行力笔直下降 。 可是,我们的方法可以用于设计丝杠和球形丝杠的力, 例如一个便携的协助机器人 。 Design of Lightweight Lead Screw Actuators for Wearable Robotic Applications Journal of Mechanical Design Kevin W. Hollander Thomas G. Sugar A wearable robot is a controlled and actuated device that is in direct contact with its user. As such, the implied requirements of this device are that it must be portable, lightweight, and most importantly safe. To achieve these goals, The design of the standard lead screw does not normally perform well in any of these categories. The typical lead screw has low pitch angles and large radii, thereby yielding low mechanical efficiencies and heavy weight. However, using the design procedure outlined in this text, both efficiency and weight are improved; thus yielding a lead screw system with performances that rival human muscle. The result of an example problem reveals a feasible lead screw design that has a power to weight ratio of 277 W/kg, approaching that of the dc motor driving it, at 312 W/kg, as well as a mechanical efficiency of 0.74, and a maximum strength to weight ratio of 11.3 kN/kg 。 1 Introduction One in five persons in the United States live with some form of disability, with 61% of those suffering from either a sensory or physical disability.As an example, within the elderly population,8% to 19% are affected by gait disorders . Many disabled individuals could benefit from some form of robotic intervention. A wearable robot is a computer controlled and actuated device that is in direct contact with its user. The purpose of such a device is the performance/strength enhancement of the wearer. It can be used in training, in therapy, or simply as a device to assist in functional daily living. The implication of the term “wearable” isthat the robot must be portable, lightweight, and most importantly safe. In contrast, a factory floor robot is none of these things, so the simple adaptation of existing technology is not possible. The standard approach to wearable robot design suffers from three major limitations; 1 Low battery power density; 2 motors with low “strength to weight” ratios; 3 weight and safety of a mechanical transmission system. The goal of this work is to review the design process of a lead screw actuator; the result of which will demonstrate significant improvements over the limitations described in item number 3, i.e., the weight and safety of the mechanical transmission system. 2 Background Interest in the area of wearable robotics has grown over the last decade. The recent surge of interest can be attributed to advancements in electronic miniaturization, microprocessor capabilities, and wireless technology proliferation. The feasibility of a portable computer controlled strength enhancing device is closer to reality However, aside from the availability of portable computation platforms, issues of the physical mechanism must still be addressed. The main issues in any wearable robot development are power, weight, and safety. How much power is available to do mechanical work? How much additional weight does the robotic device add to the person? And, how can this power be transferred and still maintain safety? The safe interaction between the wearer and theactuated robot has to be the primary concern in a wearable robot design. The purpose of a wearable robotic system is to offset the effort or energy of the operator by some amount of energy from a storage device, i.e., battery, fuel cell, and air tank. The sharing of the work load between the operator and the robot is heavily influenced by actuator efficiencies and the overall system weight. The additional weight that the robot adds to the user, in many cases, can increase the total amount of work required to accomplish a given task. This means that the robot not only has to augment the operators abilities, but must also compensate for its own additional weight. 2.1 Actuator Comparisons. Human skeletal muscle is the “gold” standard by which many robotic actuators are compared. Known for their good “power to weight” ratios and excellent force production capabilities, skeletal muscle performance is what most actuator designers would like to match. In order to match the performance capabilities of skeletal muscle, it is important to know some of its measures. Unfortunately, common throughout biological literature is a wide variation of measured muscle properties. Although reported values have a wide variance, these values can still give a sense of scale in which biological materials behave. Data tabulated and estimated from several sources were used to describe the attributes of human muscle performance, and the result of which can be seen in Table 1. Table1: Actuator comparison: Compares various actuator types by mechanical efficiency, power to weight ratio, “corrected”power to weight ratio, and strength to weight ratio Measures allows the direct comparisons to be made based upon utilization of available energy. However, both of these parameters need to be examined in the development of a wearable robotic actuator. Consider that if all actuators were to operate at 100% efficiency, then the entire group could be compared directly by their respective power to weight ratios. However, if only the power stated in the power to weight ratio were supplied to each actuator, then because of their respective efficiency, only a fraction of that power would be yielded as output. Therefore, to appropriately compare the above described actuators, their corrected power to weight( cw) ratios must be computed (1) where is the mechanical efficiency and Pwt is the original power to weight ratio. The results of this calculation for various kinds of actuators can be seen in Table 1. Values in Table 1 were obtained either by referenced literature or estimations based upon that literature. The values for the dc motor are for the Maxon RE40 motor. The values for the + gearbox combination were also found in the Maxon 2004 catalog. values from an electric Series Elastic Actuator were used to estimate these parameters. However, a similiarly sized lead screw system will likely have a better strength to weight ratio, due to its ability to carry higher loads and its nut is of lower weight. For the McKibben style air muscles, a variety of literature was found describing its relevant measures. Immediately evident in this comparison is that the corrected power to weight, cP , values of the dc motor, the air muscle and human skeletal muscle are all similarly matched. However, once additional hardware is added to the dc motor, its performance decreases significantly. If one could create a mechanical transmission system that did not significantly alter the weight of the dc motor based actuator, then performances very near that of human skeletal muscle could be achieved. 3 Lead Screw Design。 Seen above, the performance of a typical lead screw system is limited when compared to other wearable robotic actuator concepts. The primary reason for its low performance is poor mechanical efficiency. The coefficient of friction in a standard lead screw system is approximately =0.36., metal on metal, better results are possible if lubrication is used. In contrast, the typical ball screw system has very good mechanical efficiency. The rolling contact of the ball bearings keeps the frictional effects on this system to an absolute minimum. However, even with its improved efficiencies, the cP value for the ball screw actuator is still well below that of skeletal muscle, due directly to the considerable weight of the ball screw system. To improve the cP performance of a ball screw, a significant reduction of weight must be achieved. Journal of Mechanical Design Fig. 1 Lead screw geometry; as drawn, pitch p and lead l are equivalent in a single helix screw The basic mathematics surrounding the design of a lead screw can also apply to a ball screw system. The primary difference between these two mechanical transmissions is their coefficient of friction. In the following section, an exploration of the design parameters that influence weight and mechanical efficiency of a lead screw will be considered and thus improvements to its ccan be made. 3.1 Lead Screw Geometry. Shown in Fig. 1 is the basic geometry of a common lead screw. The key parameter of a lead screw is the lead, l, which is dependent on screw radius, r, and lead angle . The lead, l, is the amount of displacement achieved for each revolution of the screw. A high precision screw has a very short or fine lead. The right triangle in Fig. 1 shows the unwrapped geometry of a single revolution of a screw. The lead angle , represents the incline or slope of the screw thread. The base of the triangle is the circumference of the screw shaft, the right leg of the triangle is its lead, and the hypotenuse representsthe path length of the helical thread. Also seen on the right triangle are the forces present on a screw that is lifting a load. The force of the load is shown as Fw, the force resulting from the torque on the screw is F , the normal reaction force on the thread of the screw is N, and the frictional force is N. From this diagram, the following equation for a lifting torque can be derived (2) 3.2 Alpha Versus R. Considering, again, the geometry of a lead screw in Fig. 1, it can be shown that leadl, is described both by screw radiusr, and lead angle . The relationship between these variables is given in (3) ( 4) The meaning of Eq( 4) is that both r, screw radius, and , lead angle, are necessary to create a screw lead, l. This means that there exists a continuous relationship between r and . Although this continuous relationship exists, most screw systems are designed with very small lead angles. A review of the preferred ACME screw sizes reveal that although the individual diameters vary, the lead angles are all less than 3. From Eq( 4) .it is shown that for any screw lead desired, a variety of radii could be used. The significance of this is that as screw radius, r, shrinks, the weight of the screw shrinks by a factor.r2 Thus, to compensate for small screw radii, a larger value of lead angle , must be considered. Fig. 2 Mechanical efficiency of lead screw systems: Shaded part of the graph is the typical design region for the majority of lead screws. is small, radius is large, weight is large, and efficiencies are lower. Designs in the unshaded region of the graph, where is large, implies smaller radii, lower weight, and higher efficiencies. 3.3 Efficiency Versus Alpha. For a wearable robot design, not only is the weight of a lead screw actuator an important issue, but the efficiency of an actuator is also key. As mentioned before, a decrease in screw radius can achieve significant reductions in actuator weight. However, while the screw radius is reduced, the lead angle, must be increased to maintain a constant lead. When looking at Eq(2). it is seen that the torque required to lift a load, Fw, is dependent upon both lead angle, as well as the coefficient of friction。 Relating the efficiency of a screw to both lead angle and coefficient of friction, Figure 2 shows the impact on both coefficient of friction, and lead angle, on the efficiency of a lead screw system ( 5) Each line in Fig. 2 is based upon a different value of the coefficient of friction. Several common engineering materials are given as examples to give the reader a sense of what effect different materials or coatings could have on the efficiency of a lead screw system. This figure shows that as the lead angle increases, so does the mechanical efficiency; or at least until a peak value is reached. Ideally, it would be advantageous to pick the angle, based upon maximum efficiency. A lead screw system operating at peak efficiency minimizes the input torque requirements to lift the load Fw. The angle at which peak efficiency occurs can be determined by taking the derivative of efficiency with respect to angle, the result of which can be seen in (6) Although a high lead angle can lead to a high efficiency, it can also lead to a system that is “back-drivable”. A back-driveable system is one in which the load, Fw, can cause a rotation of the screw without the assistance of applied torque, thus allowing the load, Fw, to self-lower. A back-driveable lead screw is a bad idea for a car jack, but is desirable in a wearable robot. For the lead angles in which back-drive will occur (7) Lead angle and coefficient of friction are all that influence this condition, regardless of how high the load force becomes. Fora very low coefficient of friction system, such as a ball screw,back-drive is an inevitable consequence. 4 Practical Considerations Ideally, as shown in the previous text, it would be desirable to reduce our screw radius, r, to an almost microscopic scale. However, this is not a practical solution, neither from a design nor manufacturing perspective. Although small screw diameters and high lead angles are desired from the perspective of weight and efficiency, they may not allow the designer to meet the strength demands of the physical system. Issues, such as axial yielding,compression buckling, and mechanism bind, need to be considered as well. Consider that a single ultrathin screw may be lightweight, although it may not be strong enough to carry the load required by the system. A single or several screws can be used, but must be sized large enough to handle the load placed upon it. As a note,there is no weight advantage to using several small screws to carry a large load, as the computation for both weight and stress are driven by a cross-sectional area of the screw. However, using several small screws to carry the load can allow the continued use of high lead angles and thus operate with high efficiencies, even in the presence of high loads. By pushing the limits of raw material properties of the lead screw, high axial loading can be achieved. This approach works better for a tensional system than it does for a compression bearing system. When considering the compressive loading of a long slender screw, Euler buckling must be addressed . Similar to that of the McKibben actuators or even human muscles, a lead screw actuator could be designed to bear a tensional load only, thus eliminating the consideration of buckling altogether. Creating a tension-only actuation system in a wearable robot does not necessarily mean that an antagonistic pair is required. In fact, for an assistance robot, a disabled person may only have muscle weakness in a single actuated direction and, therefore, a single tensional actuator would be all that is required to aid that person.。 For those designers who would push the limits of the screw radius and thus lead angle to beyond that of maximum efficiency, the presence of friction limits just how far the angle can be inclined. The physical interpretation of this is that the system willbind or lock. This can be seen by evaluating Eq.( 2) . An evaluation of the denominator in Eq.( 2) . yields the following relation。 (8) In addition to the practical considerations listed here, there exists many other issues that could be detailed. Examples of which may include torsional stiffness/yielding or even heat dissipation. Each of these factors are important and worthy of consideration, however, the purpose of this exercise is to demonstrate an alternative to the typical approaches of designing or selecting screw systems. The benefits of this alternative approach are directly applicable to the design issues of a wearable robotic system. 5 Example Problem To demonstrate a crude design exercise, consider the peak ankle joint torque during gait of an able-bodied or normal individual that weighs 80 kg and walks at 0.8 Hz stepping frequency. The peak ankle torque during gait is approximately 100 Nm. This peak occurs at roughly 45% of the gait cycle, A gait cycle is defined by the heel strike of a foot to the next heel strike of the same foot. Toe off is the point in which the weight of the individual has transferred to the opposite leg and the initiation of swing begins. The conclusion of the swing phase of gait places the foot back into a heel strike position again and then the next gait cycle can begin. As an example, let us consider building a lead screw actuator for ankle gait assistance. For our problem, let us assume the level Table 2: Example problem actuator comparison: Compares lead screw designs I and II to human muscle in terms of mechanical efficiency, power to weight ratio, corrected power to weight ratio and strength to weight ratio, measures of assistance to be at 30% and that the actuator acts with a 12 cm moment arm to the ankle joint. These values can be changed but, based upon personal experience, are reasonable in their scale. Using these values and parameters available for a chosen Maxon motor, the RE40, a range of lead lengths for this example solution has been determined; the range of possible screw leads are Example Problem Results. Two lead screw designs were generated to solve this problem. The first design, lead screw I, is a design solved for maximum efficiency. Assuming a lead of 2 mm and a =0.05, yields an efficiency of 0.9 for the screw at =43.5 and a radius of 0.34 mm. With such a small radius, multiple screws are needed to hold the load. Even so, estimates for the actuator power to weight are 280 W/kg. Power to weight has been determined by dividing the peak power required in our example by the weight of the motor and estimated transmission system. From our previous work, the weight of the accessory components was scaled proportionally to the reduced weight of the screw and nut. The second design, lead screw II, uses dimensions available from a commercial vendor. The screw is estimated to have an =13.6 and an efficiency of 0.82. Even with these larger dimensions, the actuators power to weight ratio of 277 W/kg =0.74 is expected. The results of this example problem have been tabulated for the purpose of comparison. Table 2 shows the numerical results of both example lead screw designs. These values are compared to the previous values tabulated for a dc motor alone, and the estimated values for human skeletal muscle. The strength to weight properties calculated for these examples is based upon the peak force required by our example. 6 Discussion In the analysis of the maximum efficiency solution, lead screw design I, it was shown that a single small radii screw will not always handle the loads required of it. However, a bundle of screws operating in parallel can perform that task with the same high efficiency. Although a 0.34 mm radius screw would not be easily manufactured using typical techniques, it is possible that this kind of approach i.e., use multiple screws to maintain high effi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论