


免费预览已结束,剩余12页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学考点总动员系列专题40与圆有关的位置关系含解析聚焦考点温习理解一、点和圆的位置关系设O的半径是r,点P到圆心O的距离为d,则有:dr点P在O外。二、直线与圆的位置关系直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果O的半径为r,圆心O到直线l的距离为d,那么:直线l与O相交 = dr;切线的判定和性质 : (1)、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。(2)、切线的性质定理:圆的切线垂直于经过切点的半径。如右图中,OD垂直于切线。切线长定理 : (1)、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点 到圆的切线长。(2)、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。(3)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。(4)、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。如图圆O是ABC的内切圆。三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。三、圆和圆的位置关系 1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。如果两个圆有两个公共点,那么就说这两个圆相交。2、圆心距两圆圆心的距离叫做两圆的圆心距。3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离dR+r两圆外切d=R+r两圆相交R-rdr)两圆内含dr)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。名师点睛典例分类考点典例一、直线与圆的位置关系【例1】(20xx广西百色第11题)以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( ) A B C. D【答案】D【解析】则若直线y=x+b与O相交,则b的取值范围是2b2故选D考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系【点睛】考查了直线与圆的位置关系和一次函数的图象与性质,解题的关键是了解直线与圆的位置关系与d与r的数量关系【举一反三】在平面直角坐标系中,直线经过点A(3,0),点B(0,),点P的坐标为(1,0),与轴相切于点O,若将P沿轴向左平移,平移后得到(点P的对应点为点P),当P与直线相交时,横坐标为整数的点P共有( )A. 1个 B. 2个 C. 3个 D. 4个【答案】C【解析】考点典例二、切线的性质及判定【例2】(20xx广西贵港第24题)如图,在菱形中,点在对角线上,且,是的外接圆. (1)求证:是的切线;(2)若求的半径.【答案】(1)证明见解析;(2)【解析】试题分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OPAD,AE=DE,则1+OPA=90,而OAP=OPA,所以1+OAP=90,再根据菱形的性质得1=2,所以2+OAP=90,然后根据切线的判定定理得到直线AB与O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tanDAC=,得到DF=2,根据勾股定理得到AD=2,求得AE=,设O的半径为R,则OE=R,OA=R,根据勾股定理列方程即可得到结论试题解析:(1)连结OP、OA,OP交AD于E,如图,PA=PD,弧AP=弧DP,OPAD,AE=DE,1+OPA=90,OP=OA,OAP=OPA,1+OAP=90,四边形ABCD为菱形,1=2,2+OAP=90,OAAB,直线AB与O相切;(2)连结BD,交AC于点F,如图,四边形ABCD为菱形,DB与AC互相垂直平分,AC=8,tanBAC=,AF=4,tanDAC=,DF=2,AD=2,AE=,在RtPAE中,tan1=,PE=,设O的半径为R,则OE=R,OA=R,在RtOAE中,OA2=OE2+AE2,R2=(R)2+()2,R=,即O的半径为考点:切线的判定与性质;菱形的性质;解直角三角形【点晴】本题考查了圆的有关性质的综合应用,灵活运用知识解决问题是本题的解题关键【举一反三】(20xx江苏徐州第16题)如图,与相切于点,线段与弦垂直,垂足为,则 【答案】60【解析】试题解析:OABC,BC=2,根据垂径定理得:BD=BC=1在RtABD中,sinA=A=30AB与O相切于点B,ABO=90AOB=60考点:切线的性质.考点典例三、圆和圆的位置关系【例3】如图,当半径分别是5和r的两圆O1和O2外切时,它们的圆心距O1O2=8,则O2的半径r为()A12 B8 C5 D3【答案】D【解析】试题分析:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8-5=3故选D考点:圆与圆的位置关系【点睛】本题考查了圆与圆的位置关系.注意:两圆外切,圆心距等于两圆半径之和.【举一反三】如图,等圆O1和O2相交于A、B两点,O1经过O2的圆心O2,连接AO1并延长交O1于点C,则ACO2的度数为( )A60 B45 C30 D20【答案】C【解析】试题分析:如答图,连接O1O2,AO2,等圆O1和O2相交于A、B两点,O1经过O2的圆心O2,连接AO1并延长交O1于点C,AO1=AO2=O1O2.AO1O2是等边三角形.AO1O2=60.ACO2的度数为30故选C课时作业能力提升一选择题1(20xx湖南湘西州第18题)在RTABC中,C=90,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则C与直线AB的位置关系是()A相交 B相切 C相离 D不能确定【答案】A考点:直线与圆的位置关系2. (20xx浙江宁波第9题)如图,在中,以的中点为圆心分别与,相切于,两点,则的长为( )A.B.C.D.【答案】B.【解析】试题解析:如图,连接OD,OEAC,AB是圆O的切线OEAC,ODABO是BC的中点点E,点D分别是AC,AB的中点OE=AB,OD=ACOE=OD AC=ABBC=2由勾股定理得AB=2 OE=1的弧长=.故选B.3. (20xx贵州如故经9题)如图,O的直径AB=4,BC切O于点B,OC平行于弦AD,OC=5,则AD的长为()ABCD【答案】B【解析】试题解析:连接BDAB是直径,ADB=90OCAD,A=BOC,cosA=cosBOCBC切O于点B,OBBC,cosBOC=,cosA=cosBOC=又cosA=,AB=4,AD=故选B4. (20xx江苏无锡第9题)如图,菱形ABCD的边AB=20,面积为320,BAD90,O与边AB,AD都相切,AO=10,则O的半径长等于()A5B6C2 D3【答案】C.【解析】试题解析:如图作DHAB于H,连接BD,延长AO交BD于E菱形ABCD的边AB=20,面积为320,ABDH=32O,DH=16,在RtADH中,AH=12,HB=ABAH=8,在RtBDH中,BD=,设O与AB相切于F,连接AFAD=AB,OA平分DAB,AEBD,OAF+ABE=90,ABE+BDH=90,OAF=BDH,AFO=DHB=90,AOFDBH,OF=2故选C考点:1.切线的性质;2.菱形的性质 5.已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为( )A. 外离 B. 内含 C. 相交 D. 外切【答案】D.【解析】考点:圆与圆的位置关系6. (20xx四川自贡第10题)AB是O的直径,PA切O于点A,PO交O于点C;连接BC,若P=40,则B等于()A20B25C30D40【答案】B.【解析】试题解析:PA切O于点A,PAB=90,P=40,POA=9040=50,OC=OB,B=BCO=25,故选B考点:切线的性质.7. (20xx贵州遵义第12题)如图,矩形ABCD中,AB=4,BC=3,连接AC,P和Q分别是ABC和ADC的内切圆,则PQ的长是()ABCD【答案】B【解析】试题分析:四边形ABCD为矩形,ACDCAB,P和Q的半径相等在RtBC中,AB=4,BC=3,AC=5,P的半径r=1连接点P、Q,过点Q作QEBC,过点P作PEAB交QE于点E,则QEP=90,如图所示在RtQEP中,QE=BC2r=32=1,EP=AB2r=42=2,PQ=故选B考点:三角形的内切圆与内心;矩形的性质二填空题8. (20xx湖南永州第20题)如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d我们把圆上到直线l的距离等于1的点的个数记为m如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是【答案】(1)1;(2)0d3【解析】试题分析:(1)当d=3时,因32,即dr,直线与圆相离,则m=1,;(2)当m=2时,则圆上到直线l的距离等于1的点的个数记为2,可得直线与圆相交或相切或相离,所以0d3,即d的取值范围是0d3.考点:直线与圆的位置关系9. (20xx浙江衢州第15题)如图,在直角坐标系中,A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作A的切线,切点为Q,则切线长PQ的最小值是_【答案】【解析】试题解析:连接AP,PQ,当AP最小时,PQ最小,当AP直线y=x+3时,PQ最小,A的坐标为(1,0),y=x+3可化为3x+4y12=0,AP=3,PQ=考点:1.切线的性质;2.一次函数的性质.10. (20xx黑龙江齐齐哈尔第15题)如图,是的切线,切点为,是的直径,交于点,连接,若,则的度数为 【答案】80【解析】试题分析:AC是O的切线,C=90,A=50,B=40,OB=OD,B=ODB=40,COD=240=80考点:切线的性质11. (20xx上海第17题)如图,已知RtABC,C=90,AC=3,BC=4分别以点A、B为圆心画圆如果点C在A内,点B在A外,且B与A内切,那么B的半径长r的取值范围是 【答案】8r10【解析】试题分析:如图1,当C在A上,B与A内切时,A的半径为:AC=AD=4,B的半径为:r=AB+AD=5+3=8;如图2,当B在A上,B与A内切时,A的半径为:AB=AD=5,B的半径为:r=2AB=10;B的半径长r的取值范围是:8r10故答案为:8r10考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理.三、解答题12. (20xx浙江衢州第19题)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BECD于点E,交半圆O于点F。已知CE=12,BE=9(1)求证:CODCBE;(2)求半圆O的半径的长【答案】(1)证明见解析;(2) 【解析】试题分析:试题解析: (1)CD切半圆O于点D,CDOD,CDO=90,BECD,E=90=CDO,又C=C,CODCBE考点:1. 切线的性质;2.相似三角形的判定与性质.13. (20xx山东德州第20题)如图,已知RtABC,C=90,D为BC的中点.以AC为直径的圆O交AB于点E.(1)求证:DE是圆O的切线.(2)若AE:EB=1:2,BC=6,求AE的长.【答案】(1)证明见解析;(2). 【解析】:试题分析:利用思路:知(连)半径,证垂直,证明DE是圆O的切线;利用射影定理或相似三角形证明:BE2=BEBA,再列方程,求AE的长.试题解析:(1)如图所示,连接OE,CEAC是圆O的直径AEC=BEC=90D是BC的中点EDBCDC1=2OE=OC3=41+3=2+4,即OED=ACDACD=90OED=90,即OEDE又E是圆O上的一点DE是圆O的切线.(2)由(1)知BEC=90在RtBEC与RtBCA中,B为公共角,BECBCA即BC2=BEBA AE:EB=1:2,设AE=x,则BE2x,BA=3x.又BC=662=2x3xx=,即AE=.考点:圆切线判定定理及相似三角形14. (20xx甘肃庆阳第27题)如图,AN是M的直径,NBx轴,AB交M于点C(1)若点A(0,6),N(0,2),ABN=30,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是M的切线【答案】(1) B(,2)(2)证明见解析.【解析】试题分析:(1)在RtABN中,求出AN、AB即可解决问题;(2)连接MC,NC只要证明MCD=90即可试题解析:(1)A的坐标为(0,6),N(0,2),AN=4,ABN=30,ANB=90,AB=2AN=8,由勾股定理可知:NB=,B(,2)MCN+NCD=90,即MCCD直线CD是M的切线考点:切线的判定;坐标与图形性质15. (20xx江苏盐城第25题)如图,在平面直角坐标系中,RtABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分BAC交边BC于点E,经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国家公务员录用考试《行政职业能力测验》题库(附答案)
- 2025年中级银行从业资格之中级个人理财自测模拟预测题库名校卷(含答案)
- 江苏省徐州市2024-2025学年七年级下学期期末语文试题(解析版)
- 摄影师配色基础知识培训课件
- 2025有关服装品牌专卖店加盟合同的范本
- 搬运工消防知识培训课件
- 公司股权知识培训
- 公司组织化工知识培训课件
- 农业AI的“黑暗恐惧”:无光温室革命何以颠覆万亿级能源逻辑
- 智慧求职掌握行业新动态:青州银行面试题及答案指导
- 2025年幼儿教育专业职业综合素质测评考试试题及答案
- 智算中心新建项目风险管理方案
- 《中国成人呼吸系统疾病家庭氧疗指南(2024年)》解读 2
- 矿山工程机械租赁服务方案措施
- 婴幼儿发育商测评师培训大纲
- 稻虾养殖技术课件
- 水电运行培训课件
- 2025年佛山危险品资格证模拟考试题
- 居家护理服务标准化操作手册
- 2025年山西省中考生物试卷真题(含答案解析)
- 省级质控中心管理制度
评论
0/150
提交评论