




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Advanced Chemical Engineering Thermodynamics: Solution Manual Due on Oct. 10, 2016 Associate Professor Diannan Lu , Seminar 1st Diannan Lu Digital Version Created by Xiaoyu Hu 1 Diannan LuSeminar 1st: Solution ManualHomework 3-3 Homework 3-3 Solution aB= 1.29 103m2, eB= 1/2 0.508 = 0.254 m A, B, Cylindernonconducting, no heat capacity, having some friction. What we know: Thus PEaA= PDaA+ (mA+ mB+ mC)g PE= PD+ (mA+ mB+ mC)g aA = 1.013 105+ (9.07 + 4.53 + 18.14) 9.81 6.45 103 = 1.50 105Pa If we consider air pressure, P0 E = PE+ Pair aB aA = 1.72 105Pa 2 Diannan LuSeminar 1st: Solution ManualHomework 3-3 for aB/aA, in present study, we omit this VD,i= eB (aA aB) = 0.254 (6.45 1.29) 103= 1.31 103m3 PD,iVD,i= NDR TD,i ND= 1.013 105 1.31 103 8.314 311 = 5.13 102mol VE,i= eE aA= 0.254 6.45 103= 1.64 103m3 PE,iVE,i= NER TD,i NE= 1.50 105 1.64 103 8.314 311 = 9.51 102mol All initial conditions: PD,i= 1.013 105Pa,TD,i= 311 K,ND= 5.13 102mol,V D,i = 1.31 103m3 PE,i= 1.50 105Pa,TE,i= 311 K,NE= 9.51 102mol,VE,i= 1.64 103m3 (a) Expansion diathermal Constraints: 1diathermalTD,f= TE,f= Tf 2Force balance (omit air pressure) PistonaB+ PD,f(aA aB) + (mA+ mB)g = PE,faA(1) 3Ideal Gas: D : PD,f(aA aB)(eB x) = NDR Tf(2) E : PE,faA(eE+ x) = NER Tf(3) 41st Law: System(D+E)+A+B E = Q + W U = NDCV(Tf TD,i) + NECV(Tf TE,i) E = U + (mA+ mB)g x Q = 0 W = PatmaBx 3 Diannan LuSeminar 1st: Solution ManualHomework 3-3 (ND+ NE)CV(Tf Ti) + (mA+ mB)g x = PatmaBx(4) Combine (1)(4) Four variables, Four Equations, Done. Lets work it out! 1.013 105 1.29 102+ PD,f (6.45 1.29) 103+ (9.07 + 4.53) 9.81 = PE,f 6.45 103 PE,f= 0.8PD,f+ 0.409 105 (2)PD,f(6.45 1.29) 103(0.254 x) = 5.13 102 8.314 Tf PD,f(0.254 x) = 82.66Tf (3)PE,f 6.45 103(0.254 + x) = 9.51 102 8.314 Tf PE,f(0.254 + x) = 122.58Tf (b) Piston is adiabatic TD,f6= TE,f 1First Equation PD,f(aA aB) + (mA+ mB)g + PatmaB= PE,faA PD,f(6.45 1.29) 103+ (9.07 + 4.53) 9.81 + 1.013 105 1.09 103= PE,f 6.45 103 0.8PD,f+ 0.4094 105= PE,f 2Second Equation PD,f(aA aB)(eB x) = RNDTD,f PD,f(6.45 1.29) 103(0.254 x) = 5.13 102 8.314 Tf PD,f(0.254 x) = 82.66 TD,f 3Third Equation PE,f(aA)(eB+ x) = NERTE,f PE,f 6.45 103 (0.254 + x) = 9.51 102 8.314 TE,f PE,f(0.254 + x) = 122.58TE,f 4Fourth Equation NDCV(TD,f Ti) + NECV(TE,f Ti) + (mA+ mB)g x = PatmaB x 5.13 102 12.6(TD,f Ti) + 9.51 102 12.6(TE,f Ti) + (9.07 + 4.53) 9.81 x = 1.013 105 1.29 103 x 0.6464(TD,f Ti) + 1.198(TE,f Ti) = 264.093x Five variables, four equations. 1. assuming E expands reversibly and adiabatically For E, dUE=Q + W NECVdTE= PEdVE,PEVE= NER TE 4 Diannan LuSeminar 1st: Solution ManualHomework 3-3 Therefore, CVdTE= RdTE+ (RTE PE )dPE (CV+ R)dTE= RT dlnPE TE,f Ti = ?P E,f PE,i ?R/Cp+R = ?P E,f PE,i ?0.3975 TE,f= Ti ?P E,f/1.013 105 ?0.3975 (5) We get the ANSWER! x= 0.0187 m PD,f= 1.16 105Pa PE,f= 1.34 105Pa TE,f= 296.9 K TD,f= 329.4 K 2. assuming D expands reversibly and adiabatically TD,f Ti = ?P D,f PD,i ?0.3975 TD,f= Ti ?P D,f/(1.013 105) ?0.3975 (5) Then we get the ANSWER! x= 0.0195 m PD,f= 1.16 105Pa PE,f= 1.33 105Pa TE,f= 297.5 K TD,f= 327.7 K END of SOLUTION 5 Diannan LuSeminar 1st: Solution ManualHomework 3-8 Homework 3-8 Solution Data: PCylinder= 15.17 MPaTCylinder= 311.0 KVR,i=?PR,i= 0.101 MPaTR,i= 311 K CP= 29.3 J/mol KCV= 20.9 J/mol K a) mixing completely our system, open, adiabatic, rigid dUR=? ? QR +? ? W + HindNin W= 0, rigid, no movement of bounding and UR= UR Nin, we omit the gas in the VRoriginally. dUR= dUR Nin+ URdNin= HindNin CVdT Nin+ URdNin= HindNin NinCVdT = (Hin UR)dNin, where dHin= CpdT, so Hin= Hin(T0)+CP(TeT0), where T0is the reference temperature, and Teis 311 K. Besides, we know U = U(T0) + CV(T T0), where T is unknown. So we get, NinCVdT = ( ( ( ( ( Hin(T0) U(T0) (CP CV)T0+ CPTe CVTdNin, and the reason why we can cancel these is that for ideal gas, Hin(T0)U(T0) = (CPCV)T0= RT0. Thus we have, NinCVdT = (CPTe CVT)dNin.(1) Next question: Nin? Another Equation is from PV = NinRT: Use d(P(V ) = d(NinRT), we get VRdP = NinRdT + RTdNin, where weve known change of P, so we want the relation between T and Nin, and we get. dNin= 1 RT (VRdP RNindT) 6 Diannan LuSeminar 1st: Solution ManualHomework 3-8 Replace dNinin equation (1), and we get ? NinCVdT = (CPTe CVT) 1 RT (VRdP R?NindT) CPTe T dT = (CPTe CVT)dP P . Let = CP CV = 29.3 20.9 = 1.4, so we get 1 T ? Te Te T ? dT = dP P . Integrate this we get Z Tf Ti ? 1 Te T + 1 T ? dT = Z Pf Pi 1 P dP here Ti= Te= 311 K, Pi= 0.101 MPa, Pf= 15.17 MPa, and we get Tf= 434 K b) no mixing Pf= 15.17 MPa,Pi= 0.101 MPa,Ti= 311 K,N = const Tf=?Vi=?,Vf=? Use 1st law, dU =Q + W, and we get NCVdT = PdV From PV = NRT, we have d(PV ) = d(NRT), PdV + V dP = NRdT NCVdT + V dP = NRdT NCVdT + NRT P dP =NRdT ?C V+ R RT ? dT = 1 P dP Tf Ti = ?P f Pi ? R CV+R T = 46711 K ? 800 K 7 Diannan LuSeminar 1st: Solution ManualHomework 4-2 END of SOLUTION Homework 4-2 Solution ”Birds or coff ee percolator” is regarded as ”Heat machine” Assumption: no heat losses, totally reversible, normal ambient conditions, working substance is water We know the heat engine works between THand TL. For reversible engine, rev= W QH = TH TL TH What is TH, heat fl ows from the environment to the engine. What is TL, heat fl ows to the environment from the engine. Vapour to liquid at TL For L it is easy. All water is condensed! so QL= Hvapat TL. Liquid to vapour at TH For H it is not easy to determine. We dont know how much water is vapoured! Thus we get ( W QH = THTL TH QH+QC+ W = 0 From these equations, we get W QC+ W = TH TL TH Therefore, W QC = TH TL TL Assuming: TH= 300 K,TL= 280 K,QL= 2485 kJ/kg then we get W = QL TH TL TH = 2485 300 280 280 = 177.5 kJ/kg 8 Diannan LuSeminar 1st: Solution ManualHomework 4-11 Using W = gh, we have h = 177.5 103 9.81 = 18.1 km END of SOLUTION Homework 4-11 Solution (a) cocurrent Wmax= W(T, nH, nC,CPH,CPC) For Carnot Engine, W = QH QC.pay attention to ”sign” Clausius theorem. for reversible process, dS = 0 QH TH + QC TC = 0 For steady and constant pressure, QH= dHH= nHCPHdTH QC= dHC= nCCPCdTC Z T TH nHCPHdTH TH + Z T TC nCCPC TC dTC= 0 nHCPHln T TH + nCCPCln T TC = 0 We defi ne nHCPH nCCPC = 20 106 16 106 = 1.25 9 Diannan LuSeminar 1st: Solution ManualHomework 4-11 Therefore, ln T TH + ln T TC = 0 and then T+1= T HTC T = (T HTC) 1/1+ = (3001.25 278)1/2.25= 290 K. Thus, we have Wmax= QH QC = nHCPH(TH T) nCCPC(T TC) = nHCPH h TH (T HTC) 1/1+i nCCPC h (T HTC) 1/1+ TC i (b) pinch temperature? (c) countercurrent case QH TH + QH TC = 0 For steady and constant pressure QH= dHH= nHCPHdTH QC= dHC= nCCPCdTC Therefore, Z TH,f TH nHCPHdTH TH Z TC TC,f nCCPC TC dTC= 0 Let nHCPH nCCPC then we get Z TH,f TH dTH TH Z TC TC,f dTC TC = 0 thus TC,f= TC ?T H,f TH ? 10 Diannan LuSeminar 1st: Solution ManualHomework 4-11 and Wmax= QH QC = nHCPHTH TH,f nCCPCTC,f TC For , we have = W nCCPC = TH T f H TC ? TH,f TH ? 1 # Let TH,f = 0 and we get, TH,f= (TC(TH)1/1+ and TC,f= TC ?T H,f TH ? = TC T 1/1+ C T /1+ H TH ! = (TC(TH)1/1+ END of SOLUTION 11 Diannan LuSeminar 1st: Solution ManualThe Speed of Sound The Speed of Sound So
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土石方工程材料选择与运输方案
- 牛羊屠宰厂建设项目环境影响报告书
- 风光制氢醇一体化项目节能评估报告
- 国际销售合同4篇
- 2025年叉车考试难题库及答案
- 建筑施工电梯安装、拆除专项建筑施工组织设计及对策
- 上海市房地产经纪合同模板
- 离婚后宅基地房屋分割与继承权处理协议
- 低碳环保社区物业合同转让及绿色生活协议
- 离婚后子女抚养费增加与共同财产分割补充协议
- 2025年煤矿企业主要负责人安全生产理论考试笔试试题含答案
- 煤矿安全规程2025版解读
- 监狱公选面试题库及答案
- 尿培养的采集
- 具有法律效应的还款协议书6篇
- 东航空乘英语考试题目及答案
- 2025绿植租赁协议(简易版)
- T-AOPA0062-2024电动航空器电推进系统动力电机控制器技术规范
- 《三级工学一体化师资培训》课件-第四课:教学活动策划
- 2024年一级建造师《民航机场工程管理与实务》真题及答案
- 2025年全国企业员工全面质量管理知识竞赛题及参考答案
评论
0/150
提交评论