(控制理论与控制工程专业论文)小波变换图像压缩及其图像通信系统的设计与实现.pdf_第1页
(控制理论与控制工程专业论文)小波变换图像压缩及其图像通信系统的设计与实现.pdf_第2页
(控制理论与控制工程专业论文)小波变换图像压缩及其图像通信系统的设计与实现.pdf_第3页
(控制理论与控制工程专业论文)小波变换图像压缩及其图像通信系统的设计与实现.pdf_第4页
(控制理论与控制工程专业论文)小波变换图像压缩及其图像通信系统的设计与实现.pdf_第5页
已阅读5页,还剩69页未读 继续免费阅读

(控制理论与控制工程专业论文)小波变换图像压缩及其图像通信系统的设计与实现.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江莽大学磺士研究生擎监论文 摘要 筵鬻臻急菝零鹣发震,搽索鸯效懿瑟豫售譬缓辫方法,辍梗糕震瑗鸯豹弱 络实现甄优质的图像信息传输是当今电信界极寓挑战性的一个前沿课题 数字图像中存在缀大的冗余,针对不同的冗余信息,产生了不同图像压缩 方法。缀典蘸嚣缩鼓零已稳当蔽熬,夔羞模式谖掰、诗算瓠援觉、嚣算飘鬣形 学技术火孱引入到图像编码中由此形成了新一代的编码方法。尤其是小波变换 图像篷缩是近2 0 年来研究的热点。 本文援撵图像信芍瓣特征对小波交换图豫嚣缩震开臻究。交换、量张秘璃 编码是构成小波编码器的三个主要成分,本文围绕这三个方灏的内容对小波编 码方法遴行研究和改避,并把改进的算法应用到计算机图像遴信系统中。变换 部分;零文在分褥小波交换豹理论嫠疆土详细分析y d , 波交羧在銎像垂缀编码 中的应用。为了提高逡箅速度本文采用易于工稔实现的二维离散小波变换的快 速算法一m a l l a t 算法,舞对图像避行了滤波秘小波交换实验。量化部分:为了 减少嵌入零糖编鹞率孤独零豹数秘释提高零树季曩籀效率,本文箍出一种输梯垄 量化和改进的嵌入零树小波相结合的图像比率可分级性编码的新编码方法。实 验表明这秘薪编码方法在一定程度上克服了e z w 算法的不足,进一步爨赢了 p s n r 谯。熵编码部分;采薅不需簧预先定,望檄率模型的自邋应算术编褥方法 代替传统的h u f f m a n 编码方法,对经过改进的嵌入零树编码膈的零树符号进行 无损压缓编码。在图像编码过程孛充分利慝7 人眼的视觉特槛,取褥了较好戆 效采。最后设计和实现了计算机图像通信系统,定要用于静藏图像的传输。本 系统采用t c p i p 协议和客户机服务器模式,结合多线程技术和本文中提出的 小波凰像编码技术,蠢效的提高7 瀚像传输的效搴。最后递缮了实验室傍其实 验,实验袭疆该系统逡行良好,霄一定韵应磊魏爨。 i 关键词l :静止图像服缩、小波变换、阶梯型量化、e z w 算法、图像传输 江苏大学硕士研究生毕业论文 a b s t r a c t w i t ht h er a p i dd e v e l o p m e n to fi n f o r m a t i o nt e c h n o l o g y , i ti sv e r ye s s e n t i a lt o f i n dan e wc o d i n gm e t h o dt oc o m p r e s st h eb a n d w i d t ho fi m a g ei n f o r m a t i o n ,s oa s t or e a l i z eh i g h e rq u a l i t yi m a g et r a n s m i s s i o no v e rt h ee x i s t i n gn e t w o r k s t h i si sa l s oa c h a l l e n g i n ga n df r o n ts u b j e c ti nt h ea r e ao f t e l e c o m m u n i c a t i o nn o w t h e r ei sal o to f r e d u n d a n c ei n f o r m a t i o ni i lt h ed i g i t a li m a g e t h ed i f f e r e n tk i n d s o fm e t h o do fi m a g ec o m p r e s s i o na p p e a r e dw i t ht h ed i f f e r e n tk i n d so fr e d u n d a n c e c l a s s i c a lc o m p r e s st e c h n o l o g yi sa l r e a d yq u i t ep e r f e c t ,a n dt h en e wg e n e r a t i o n m e t h o do fi m a g ec o d i n ga p p e a r e dw i t ht h ep a t t e mr e c o g n i t i o n , c o m p u t e rv i s i o n a n dc o m p u t e rg r a p h i c st e c h n o l o g yu s e di nt h ei m a g ec o m p r e s s i o n e s p e c i a l l y , i m a g ec o m p r e s s i o nw i t hw a v e l e tt r a n s f o r mi st h er e s e a r c hf o c u sd u r i n gt h er e c e n t l y p a s t2 0y e a r s i nt l l i sp a p e r , i m a g ec o m p r e s s i o nw i t hw a v e l e tt r a n s f o r i l li sr e s e a r c h e da c c o r d i n g t o 也ec h a r a c t e d s t i co f t h ei m a g es i g n a l 。1 1 1 ew a v e l e t e n c o d e ri sc o n s i s t e do f w a v e l e t t r a n s f o r i l l ,q u a n t i z a t i o na n de n t r o p yc o d i n g ,a n dt h em a i nr e s e a r c hw o r ki sc a r r i e d o u ta b o u tt h et h r e eq u e s t i o n s b a s e do nt h er e s e a r c ho ft h ew a v e l e tt r a n s f o r i l lt h e o r y , t h ea p p l i c a t i o no fw a v e l e tt r a n s f o r mi ni m a g ec o m p r e s s i o ni sp a r t i c u l a r l ya n a l y z e d t h es p e e d i n e s sa l g o r i t h mo ft o wd i m e n s i o nd i s c r e t ew a v e l e tt r a n s f o r l ni sa d o p t e d m a l l a ta l g o r i t h ma n dt h ew a v e l e tt r a n s f o r me x p e r i m e n to f t h ei m a g ei sc a r r i e do u t mt h i sp a p e r i no r d e l t or e d u c et h en u m b e ro fi s o l a t e dz e r o so fe z w ( e m b e d d e d z e r o t r e ew a v e l e t se n c o d i n 【曲a l g o r i t h ma n di m p r o v e e f f i c i e n c yo fs c a n n i n gz e r o t r e e s , i nt h i sp a p e r ,a ni m a g er a t es e a l a b l ec o d i n ga l g o r i t h mb a s e do ns c a l a rq u a n t i z a t i o n a n dm o d i f i e de m b e d d e dz e r o t r e ew a v e l e ti sp r o p o s e d s i m u l a t i o nr e s u l t ss h o wt h e p r o p o s e dc o d i n gs c h e m ei ss i m p l ei ns t r u c t u r e sa n di ss u p e r i o rt ot h ee z wa l g o r i t h m i np s n r n 坨p a r to f e n t r o p yc o d i n g a d a p t i v ea r i t h m e t i cc o d i n gi sp r o p o s e di n s t e a d o fh u 矮m a nc o d i n gm e t h o da n dn s et h ec h a r a c t e r i s t i c so ft h eh u m a nv i s u a ls y s t e m w i t h i nt h i sp r o c e d u r e , t h ee o m p a r i s o i lr e s u l t ss h o wt h a tt h ei m p r o v e dd a t a c o n v e r s i o nm e t h o di sm o r ee 如c t i v et h a nt h et r a d i t i o n a lh u f f m a nc o d i n gm e t h o d l a s t l y , d e s i g na n di m p l e m e n tt h ei m a g ec o m m u n i c a t i o ns y s t e m u s ct h et c p i p p r o t o c o la n dm o d eo fc l i e n t s e r v e r , a p p l yc s o c k e tm e t h o da n di m a g ec o d i n gs k i l l b a s e do nw a v e l e tt r a n s f o r m , a n de n h a n c et h e s p e e do fi m a g ec o m m u n i c a t i o n , s i m u l a t i o ne x p e r i m e n ts h o w st h a tt h ei m a g ec o m m u n i c a t i o ns y s t e mr u n sv e r yw e l l 【k e y w o r d s l :s t i l li m a g ec o d i n g , w a v e l e tt r a n s f o r m ,s c a l a rq u a n t i z a t i o n , e z w i m a g e t r a n s m i s s i o n i i 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定, 同意学校保留并向国家有关部f 1 或机构送交论文的复印件和电子版, 允许论文被鸯阅和借阂。本人授权江苏大学可以将本学位论文的全部 内容或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫 描等复制手段保存和汇编本学位论文。 保密口,在年解密后适用本授权书。 本学位论文属于 不保密函。 学位论文作者虢纠纠日啦 签字日期:c k 廿年6 月妒目 黝签名:才圳扩“l v 签字日期:a w 眸b 月弦目 学位论文作者毕、业后去向: 工作单也 i 懒二镪铆勋电话:刀爿一7 巧醐p 通讯龇:啉2 彤f 移寸辄系蝴:q ,口1 独创性声明 本人郑重声明:所里交的学位论文,是本人在导师的指导下,独立进 行研究工侮所取得的成果。除文中已经注明弓l 用的内容以外,本论文 不包含任何其他个人或集体已经发表或撰写过的作品成果。对本文的 研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人 完全意识到本声明的法律结果由本入承摆。 学位论文作者签名:力j 墨m 丈 日期:洲年易月沙曰 扛苏大学硕士研究生毕业论文 第一章绪论 1 1 图像数据压缩的必要性和可能性 数据压缩最初是信息论研究的一个重要课题,在信息论中数据压缩被称为信 源编码数据压缩主要研究数据表示、传输、变换和编码的方法,目的是减少 存储数据所需要的空间和传输所用的时间。随着计算机技术与数字通信技术的 迅速发展,特别是网络和多媒体技术的兴起,图像编码与压缩作为数据压缩的 一个分支,已受到越来越多的关注。 从本质上说,图像编码与压缩就是对图像数据按照一定的规则进行变换和组 合,从而达到以尽可能少的代码( 符号) 来表示尽可能多的信息图像数据的 特点之一是数据量大例如:一幅数字化了单色卫星遥感图像由1 0 0 0 0 1 0 0 0 0 个像索( p i x e l ) 组成,每个像素的灰度用1 2 比特( b i t ) 表示,那么这幅图像就要用 1 2 亿比特表示。在多媒体中,海量图像数据的存储和处理是难点之一。如不进 行编码压缩处理,一张6 0 0 m 字节容量的光盘仅能存放2 0 秒左右的6 4 0 x 4 8 0 像素的图像画面。另外图像信息的数据量太大使得i n t e r n e t 本来就非常紧张的带 宽变得更加不堪重负 由此可知,大数据量的图像信息会给存储器容量,通信干线信道的带宽,以 及计算机的处理速度增加极大的压力。单纯靠增加存储容量,提高信道带宽以 及计算机的处理速度等方法来解决这个问题不现实。只有采用压缩编码技术, 减少存储或传输数据量才能从本质上解决图像数据量过大的问题。 数字图像中存在很大的冗余度,冗余信息主要有:空间冗余、时间冗余、信 息熵冗余、结构冗余,知识冗余和视觉冗余等几种方式,因此图像信息的压缩 是可能的。针对不同的冗余信息,产生了图像压缩中各种不同的方法,一个好 的图像压缩系统应该综合各种方法最大限度的消除各种冗余信息。 1 2 小波变换在图像编码中的应用 1 2 1 图像压缩编码的发展 图像压缩编码技术发展至今已经较为成熟。经典的图像压缩方法其基本出发 l 征苏大学硕士研究生毕业论文 点是将数字图像作为一个客观信源,主要依靠图像本身固有的统计属性进行信 息压缩编码。6 0 年代,正交变换如k l 变换编码,离散余弦变换( d c l ) 编码 有了很大的进展。变换编码主要依赖信号和能量的分布关系,通过选取合适的 正交变换可以获得更加恰当的图像信息分布,变换后能量相对集中,系数相关 性下降,通过略去或分配较少的比特数能给较少的分量就可获得图像信息的压 缩编码。 进入8 0 年代后,经典的压缩技术已相当成熟,同时模式识别、计算机视觉、 计算机图形学技术大量引入到图像编码中,给图像编码方法探索提出了新的途 径,图像编码新方法的研究也取得了突破性的进展。小波变换、矢量量化、分 形、神经网络、模型法等方法逐渐发展起来由此形成了新一代的编码方法。尤 其是小波变换图像压缩是近2 0 年来研究的热点。 1 2 2 小波变换图像压缩的现状及前景 小波变换【l 】( w a v e l e tt r a n s f o r m ) 是8 0 年代后期发展起来的应用数学分支,是 f o u r i e r 分析的发展与完善,它被看作是近年来数学方法上的重大突破。1 9 8 9 年 m a u a t 首先将小波变换用于多分辨率图像的描述,这个多分辨率图像的描述叫 做图像的小波分解。小波图像编码一方面拥有传统变换图像编码方法的优点, 能够很好消除图像数据中的统计冗余;另一方面,小被变换多分辨率的变换特 性提供了利用人眼视觉特性的很好机制,而且小波变换后的图像数据能够保持 原图像在各种分辨率下的精细结构,为进一步去除图像中其他形式的冗余信息 提供了便利因此,小波图像编码在较高压缩比的图像编码领域被非常地看好。 又由于小波变换克服了d c t 的方块效应和蚊式噪声,能获得很高的压缩比。因 此小波变换是目前最有潜力的图像编码技术,是目前国际上公认的最新时一 频分析工具,在时间一频率域上都具有良好的局部性,具有“自适应性”和 “聚焦”作用,已成为最新的国际图像压缩标准j p e g 2 0 0 0 的主要技术。 由于小波变换是目前最有潜力的图像编码技术,所v 2 d , 波图像压缩是国内 外研究的热点。国内的微软亚洲研究院、中国科学院自动化研究所、华中科技 大学图象信息处理与智能控制教育部重点实验室等在小波变换图像处理方面做 了大量的工作特别是微软亚洲研究院的多媒体小组利用小波分析方法在高效 2 扛苏大学硕士研究生毕业论文 音视频媒体的压缩方面发表了很多高水平的学术论文国外许多重要的期刊 如:i e e et r a n s a c t i o no ni m a g ep r o c e s s i n g 、s i g n a lp r o c e s s i n g :i m a g e c o m m u n i c a t i o n 等经常刊登有关小波变换图像压缩领域的学术论文,有的理论 已经很成熟并投入实际使用,时至今日已达到很高的应用水平 在图像处理方面最新最先进的技术应用在太空研究方面,如:中国“神舟,5 号载人飞船于2 0 0 3 年1 0 月1 5 日成功升空,并从太空传回了清晰图像,这说明 我国在图像压缩和传输处理方面保持着先进的水平神舟5 号载人飞船成功升 空,实现了中国人邀游太空的“飞天”梦想,与此同时,我国对月球的探测工 程也已经进入实施阶段,用我国月球探测首席科学家、中科院院士欧阳自远先 生的话说;中国探月工程已是“万事俱备,整装待发”,我们有理由相信图像处 理技术也将有新的重大突破另外,美国“勇气”号火星车于美国太平洋时间2 0 0 4 年1 月3 日2 0 时3 5 分( 北京时问4 日1 2 时3 5 分) 在火星表面成功着陆,美国 宇航局5 日公布了“勇气”号火星车拍摄的首张火星三维全景黑白照片。科学家 们说,“勇气”号已拍下火星表面高分辨率全景彩照,现正在逐步向地面发送。 这表明美国在图像处理方面走在了世界的最前面。所以说图像处理如图像压缩、 图像传输等研究有着非常好的前景 1 3 改进的嵌入零树小波算法 最新的小波编码器都沿袭变换编码的基本思想,即去相关性。变换、量化 和熵编码等是构成小波编码器的三个主要成分。目前人们围绕着这三个方面的 内容开展小波编码器的研究小波编码的基本思想:将原始图像经二维小波变 换后,转换成小波域上的小波系数,然后对小波系数进行量化编码。由于小波 变换后原始图像能量集中在少数部分的小波系数上,因此最简单的系数量化方 法就是将某一阈值以下的系数略去( 或者表示为恒定常数) ,只保留那些能量较 大的小波系数,从而达到数据压缩的目的。这只是一个小波压缩的基本思想。 下面先给出本文图像编码算法的总体流程图: 图1 一i 编码算法总体流程图 3 江苏大学硕士研究生毕业论文 本文小波变换图像压缩的整个算法就是按照图i 一1 的流程进行的。主要分 为四个模块: 1 、图像的二维离散小波分解 在这个模块中为了提高实际编程过程中的运算速度采用离散小波变换 ( d w d 的快速算法一m a l l a t 算法。m a l l a t 算法详细研究、程序实现和图像小波 变换分解实验将在第二章给出。 2 、低层系数阶梯型量化 一般的小波编码器并没有这部分,这是本文的一个创新点之一。对小波分 解低层系数进行阶梯型量化的目的是为了推迟小波分解后较低层次上的重要系 数出现的时间从而减少在经过嵌入零树小波编码后码流中孤立零的数目,从而 提高编码效率。阶梯型量化的思想、实现方法以及量化因子的选取原则将在第 三章中详细研究。 3 、改进的嵌入零树小波算法1 2 1 e z w 编码的优点在于它承认子带中的相似性。即:如果一个粗尺度上的小 波系数是不重要的,则同一方向上的细尺度的相同位置上的小波系数,也极有 可能是不重要的。 然而,通过对e z w 算法过程分析不难发现在“孤立零”编码方面存在两方 面的不足: ( 1 ) 、该算法在进行零树编码时,对未能被包括进零树的“零值”,需要将其 编成“孤立零”码,实验表明对这部分编码通常需付出较高的代价,往往影响 到编码效率,可以采用改进的量化因子减少“孤立零”码的数目; ( 2 ) 、在主扫描过程中,为了确定小波系数究竟是零树树根还是孤立零必须 扫描整个四叉树,从而必然导致扫描高频子带所产生的二进制符号流中存在大 量冗余,显然要花费大量时间 针对这两方面的问题本文提出一种阶梯型量化和改进的嵌入零树小波相结 合的图像比率可分级性编码的新编码方法。对于第一个问题在前一个模块中得 到解决:采取一种阶梯型量化减少孤立零的数目。针对第二个问题:对整体小 波系数采用改进的零树编码,通过定义多阙值与改进的逐次逼近量化方法提高 4 江苏大学硕士研究生毕业论文 扫描效率获得嵌入式码流,以实现比率的可分级编码改进算法及程序实现详 见第三章 4 、熵编码 熵编码模块采用熵编码中的自适应算术编码方法。由于h u f f m a a 编码中必 须对码字进行概率统计。然而在实际应用中,每一幅图形中各码字出现的概率 是不相同的。这就使得我们对任何一幅图像进行压缩前都需要花费时间来对其 进行概率统计针对此,本文提出采用不需要预先定义概率模型的自适应算术 编码方法代替h u f f m a n 编码对经过改进的嵌入零树编码后的图像码流进行无损 压缩编码。算法详见第三章。 针对以上四个压缩流程,采用本文提出的一种阶梯型量化和改进的嵌入零 树小波相结合的图像比率可分级性编码的新编码方法,对输入图像进行小波变 换图像压缩。解码过程是编码过程的逆运算,在此不作介绍。第三章的仿真实 验表明这种新编码方法通过减少孤立零数目和提高零树扫描效率在一定程度上 克服了e z w 算法的不足,进一步提高了p s n r 值。 1 4 图像通信系统的设计与实现 2 0 世纪9 0 年代初我国的图像通信市场才刚刚开启,经过短短的十多年的发 展已经形成了一个初具规模的市场。从最初的政府部门和邮电部门发展到目前 的公安、司法、银行、教育,卫生、电力、商务和军事等等。可见图像通信的 应用非常广泛,具有很好的应用前景。 活动图像传输已经取得了重大的发展,但是静止图像传输仍然具有其重大 需求。在一些场合,人们只需要定期的观察图像的内容,而不重视图像内容的 “动感”。比如在计算机房、仓库或在环境恶劣的场合( 如化工、石油、森林防 火) 等的监测,图像数据库检索以及快速传递图像资料( 如文物图片、新闻单 位图片传送、气象资料等) ,对图像的实时传输的要求比对会议电视系统的要求 大大降低。所以说静止图像通信的应用比较广泛,有一定的社会效益。随着数 码相机的普及,静止图像传输系统也将进入家用市场。 本论文主要着重于静止图像的压缩和传输的研究。没有特别说明时默认为 江苏大学硕士研究生毕业论文 对静止图像的研究。这种静止图像通信系统工作的方式可以用高速采集、低速 传输来概括。第四章计算机图像通信( 监控) 系统按照:计算机屏幕图像采集一 图像压缩( 采用本文压缩算法) 一图像网络传输一图像恢复的顺序进行设计 和实现,如图1 2 所示: 娶 罂 螭 膏 驽 1 广窝们 r 1r 1 h 型= 型笋 每 期酬剿禺:c 茎圭嚼 簟 a - 匿m 拇 篡匦堕卜 每 暮 压晦 图1 2 图像压缩及传输系统示意图 本系统采用t c w i p 协议和客户机服务器模式,进行了系统结构设计,给 出了网络编程 3 1 的细节、系统基本硬件要求,最后进行了系统仿真。由于采用 了本文提出的小波变换图像压缩算法将传输的图像在服务器端先进行压缩,然 后在客户端进行解压从而提高了传输效率。经过实验室局域网调试证明本系统 运行良好,具有一定的实用性。系统设计与实现方案详见第四章。 6 征苏大学颈士研究生毕业论文 第二章小波变换及在图像压缩中的应用 小波分析是传统傅立叶分析发展史上的里程碑,它已广泛应用于图像纹理分 析,图像编码、布朗分形维数的计算、计算机视觉、模式识别、语音识别、语音 编码、地震信号处理和量子场理论等科技领域。特别是s g m a l l a t 在1 9 8 6 年将 计算机视觉领域的多分辨率分析的思想巧妙的引入到小波分析中,从而统一了在 此之前各种小波基的构造方法,并给出了一种子带滤波器结构的离散小波变换与 重构算法。1 9 8 9 年s g m a l l a t 又将小波变换用于多分辨率图像的描述,这个多分 辨率的图像描述叫做图像的小波分解。由于小波的多分辨率特性既可高效的描述 图像的平坦区域,又可有效的表示图像信号的局部突变( 即图像的边缘轮廓部 分) ,它在空域和频域的良好的局部性,使之可以聚焦到图像的任何细节,因此 小波变换特别适合于图像信号处理。 2 1 课题中选择小波变换的原因 小波变换是在傅立叶分析 4 1 的基础上发展起来的,它优于傅立叶分析的地方 是它在空域和频域都是局部化的,其局部化格式随频率自动变换,在高频处取窄 的时( 空) 间窗,在低频处取宽的时( 空) 问窗,适合处理非平稳信号,在图像 处理、模式识别、机器人视觉、量子力学等领域得到广泛应用。目前小波理论已 成为数学、计算机和物理等学科共同研究的一个热点。 , 一个平方可积函数厂( x ) 的傅立叶变换定义为:夕p ) = e 厂 一”d x 。于p ) 称为原函数的频谱( 函数) ,它能精确地说明信号,( x ) 含有各种频率成份,但不 能提供各种频率成份的空间位置信息。因此说傅立叶变换的频域分辨率为无穷 大,空域分辨率为零,或者说傅立叶变换在频域是完全局部化的,在空域是非局 部化的。 小波变换在高频处窗口高而窄,可以精确地定出突变信号的位置;在低频处 窗口矮而宽,适应分析缓变信号的需要,这种特性被称为“变焦”( z o o m ) ,因 此小波又被q 做数学显微镜,这也是小波受重视的重要原因之一。 小波变换的优势在于如下几个方面5 1 1 6 1 : 7 江苏大学硕士研究生毕业论文 由于小波变换可以将信号或图像分层次按小波基展开,所以可以根据图 像信号的性质以及事先给定的图像处理要求确定到底要展开到哪一级为止,从 而不仅能有效的控制计算量,满足实时处理的需要,而且可以方便地实现通常 由子频带、层次编码技术实现的累进传输编码( 即采取逐步浮现的方式传送多 媒体图像) 。这样一种工作方式在多媒体数据浏览、医学图片远程诊断时是非常 有用的 利用小波变换的放大、缩小和平移的数学显微镜功能,可以方便地产生 各种分辨率的图像,从而适应不同分辨率的图像i ,o 设备和不同传输速率的通 信系统。 利用小波变换能够比较精确的进行图像拼接,因此对较大的图像可以进 行分块处理,然后再进行拼接。这样能为图像的并行处理提供突破的方向。 基于零树小波的图像压缩算法,在非常宽的比特率范围内具有很高的编 码效率。除了具有很高的压缩效率之外,它还提供了空间和质量的可缩放性, 以及对任意形状耳标的编码。其空间可缩放性高达l l 级,质量的可缩放性具有 连续性。小波公式以累进传输和时间上扩充静态图像分辨率金字塔的形式提供 比特率的可缩放性的编码。编码的位流也可以用于图像分辨率层次抽样。这种 技术提供了分辨率的可缩放性,以便处理在交互应用场合广泛的观察条件,以 及把2 d 图像映射到3 d 虚拟空问。 综合以上条件:小波变换具有空间一频率局部性、方向性、多分辨率性 上的优点,且与视觉特性接近,所以不仅可以利用统计特性,还可以利用视觉 特性来提高编码效率,非常适合于静止图像压缩编码。因此在课题中将小波变 换作为正交变换编码方法应用于图像压缩及传输系统的研究中 2 2 连续小波变换 2 2 1 连续小波变换的定义 小波函数的确切定义阳刀为:设妒( f ) 是一个实值函数且它的频谱甲( m ) 满足 允许条件,即: c ,= l m ( 2 - - 1 ) 江苏大学硕士研究生毕业论文 贝1 j y 【t ) 被称为一个基本小波。由于在积分式的分母上,所以必须满足如下条 件: 掣( o ) = 0j y ( f ) a t = 0 ( 2 2 ) 从单一的函数妒( f ) 经伸缩、平移后得到小波函数族j ( f ) : ( f ) = 万iy ( 竿) ( 2 _ 3 ) 其中a o 且与b 同为实数。变量a 反映一个特定基函数的尺度( 宽度) ,而b 则 指明它沿t 轴的平移位置。 函数,( f ) 以小波】l c ,( f ) 为基的连续小波变换就是: 肜,( 口,6 ) = 1 ) ,五,o ( x ,y ) 都以完全相同的方式分解而构成四个在 尺度2 ”上更小的图像,最终结果是一个类似与h a r t 变换的配置。将内积写出 卷积形式,得到 刀( 州,h ) = ( 厶。( x ,y ) ,o 一2 m ,) ,一2 玎) ) ( 2 1 9 ) 江苏大学顾士研究生毕业论文 i , ( ,”,一) = ( 厶。( x ,y ) ,y ( x 一2 m ,y 一2 n ) 名( 埘,月) = 镊,。“力,2 ( 工一2 m ,y 一2 玎) ) 名( i n ,珂) = = c 卅+ l ,晶嘶 h 月 叱= 山( 九山, = c 卅椰叫 ( 2 2 5 ) ( 2 2 6 ) 计算中只用到变量代换。注意,滤波与采样率指标m 没有任何关系。换句 话,无论从哪层尺度空间出发,算法都一样此外,投影。专圪和匕。专圪 分别是低通和带通,所以g k 和噍分别是低通滤波器和带通滤波器。那么对于恢 复算法可以类似的推导。得到: 椰= ,一g k 幽+ 以,砧2 一(227)gk+ l j = 乙,一2 + 2 - d 历一厅t 一2 h l z 一 上述就是m a l l a t 算法的数学描述。下面给出一般性的二维m a l l a t 算法【1 2 1 【1 3 l : 输入: q 0 输出: g ,) , 见,o , 巩,2 , 见,) 步骤: 分解: c _ ,1 = g i _ 2 。g t m 见,( ”- - y q g 。札2 。 见,- - y q h h 。毋嘲 d _ ,3 = q 力。岛。 ( 2 2 8 ) 合成: ,= ( g ,一g 一。一g n - 2 l - k 4 ,o - 詹讲石删+ b 户五一t i 删+ 嘎户j ;一t k :,) 上面有关m a u a t 算法的描述可以用图2 - - 3 和图2 - - 4 形象地表示出来。为了避 免混淆,我们使用理想低通和带通滤波器( 其实这是给出了基于s i n e 小波的一 个离散小波变换,且这些小波并不具有紧支集) ,即: ( 七) = 西1s i n c ( 霈k 1 6 扛苏大学硕士研究生毕业论文 ( | ) = 菇( 七) 一( 七) 矿( f ) = j 伽( 刀f ) ( ,) = 2 ( 2 ,) 一矿( ,) ( 2 2 9 ) 另外,因为尺度函数和小波函数都是可分离的,所以每个卷积可分解成在 刀( x ,y ) 的行和列上的一维卷积图2 - 3 显示了此过程 行列行列 图2 3d w t 图像分解步骤 ,2 卜y j 户2 j ) 。z 2 2 弘? ) 呓,b 功 在第一层,我们首先用( 叫) 和啊( 叫) 分别与图像石( 毛y ) 的每行作积分并 丢弃奇数列( 以最左列为第0 列) 。接着,这个等x n 阵列的每列再和i , o ( x ) 与 二 ( 吖) 相卷积,丢弃奇数行( 以最上一行为第0 行) 。其结果就是该层变换所 要求的四个生。旦的数组。这样一来,二维可分离小波变换可以快速计算。变 22 换过程能执行到层,对于n n 像素的图,整数j _ l o g :n j 如果变换系数能计 算到浮点精度,那么用逆变换重建的图像就只有微小的失真。 逆变换是通过与上述类似的过程来实现的。这一过程可图解为图2 4 。 在每一层,我们都通过在每一列的左边插入一列0 来增频采样前一层的4 个阵列;接着如图2 - - 4 所示用( 一x ) 或 ( 一x ) 来卷积各行,再成对地把这几 r 个芸的阵列加起来;然后通过在每行上面插入一行0 来将刚才所得两个阵 z 列的大小增频采样为n x n ;再用( x ) 与 ( 吖) 这两个阵列的每列卷积而这 两个阵列的和就是这一层次重建的结果。 江苏大学硕士研究生毕业论文 ,2 j ( x - y ) 1 2 j ( 五,) y 2 2 j ( t y ) 广2 j ( 置y ) 列行列行 图2 4d w t 图像重建步骤 在本小节的基础上,本章最后的2 6 小节将对江苏大学科技馆原图像进行小 波分解的各种实验。可以和本小节的插图一一对照。 2 6 图像小波变换的实验结果 本章主要研究了“二维离散小波变换、低层阶梯型量化、改进的e z w 、熵 编码”这四个模块里的“二维离散小波变换”模块,通过对多分辨率分析和二 维小波变换的分析,本文采用容易工程实现的快速算法:离散小波变换( d w t ) 的快速算法- - m a l l a t 算法。并从理论上进行了详细的分析,本小节在2 5 小节的 理论基础上对图像进行了低通滤波、高通滤波、行变换、列变换、图像的l 层 小波变换、图像的2 层小波变换和图像3 层小波变换实验【1 2 】【13 1 。 本实验采用图片为江苏大学科技馆实景图片。图像小波变换的实验程序界 面如下图所示: 扛苏大学硕士研究生毕业论文 图2 5 图像小波变换实验界面 下图为用来实验的图像,江苏大学科技馆原图: 图2 6 江苏大学科技馆原图 二维m a l l a t 算法中,从图像小波变换的实现过程可知,图像数据的每一级 小波分解总是将上级低频数据划分为更精细的频带其中码( 即b 1 一) 是 通过先将上级低频图像数据在水平方向低通滤波后( 行方向) ,再经过竖直方向 1 9 江苏大学颂1 :研究生毕业论文 高通滤波( 列方向) 而得到,同理得到而q 频带、q 频带和日一频带。又因 为二维m a l l a t 算法采用了可分离的滤波器设计,实质上相当于分别对图像数据 的行和列做一维小波变换图2 - - 3 显示了此过程,下面对科技馆原图像分别进行 低通滤波、高通滤波、一次行变换和一次列的变换,如图2 7 、2 8 、2 9 、 2 1 0 所示: 图2 7低通滤波 图2 8 高通滤波 幽2 91 次行变换图2 一1 01 次列变换 图像可以依据二维小波按如下方式扩展。在变换的每一层次,图像都被分 解为4 个大小为原来尺寸1 4 的子块频带区域,如图2 一l 所示,分别包含了相 应频带的小波系数,相当于在水平方向和竖直方向上进行隔点采样。进行下一 扛苏大学硕士研究生毕业论文 层小波变换时,变换数据集中在l l 频带上,图2 2 所示为3 层小波变换的系 数分布。等式( 2 1 5 ) 至等式( 2 一1 8 ) 说明了图像小波变换的数学原型下 面对科技馆原图像分别进行了l 层、2 层和3 层小波变换,如图2 一l l 、2 一1 2 、 2 1 3 所示: 圈2 6 江苏大学科技馆原图图2 一1 1 图像l 层小波变换 i ! i2 1 2 图像2 层小波变换 图2 一1 3 图像3 层小波变换 最后附上江苏大学科技馆原图的傅立叶变换和离散余弦变换实验图片,如 图2 1 4 、2 1 5 所示: 翻2 - - 1 4 图像傅立叶变换 图2 - - 1 5 图像离散余弦变换 立苏大学项士研究生毕业论文 第三章改进的嵌入零树小波图像编码算法 第二章介绍y d , 波变换的基本原理和方法,采用m a l l a t 快速算法对江苏大 学科技馆原图进行了三级小波分解本章在上章的基础上分析图像小波变换后 的系数分布特点,根据这些特点选择了零树量化的量化方法。详细的讨论了j m s h a p i r o 提出的e z w ( e m b e d d e dz e r o t r e ew a v e l e = ti m a g ec o d i n g ) 编码算法,在 此基础上提出一种阶梯型量化和改进的嵌入零树小波相结合的图像比率可分级 性编码的新编码方法。这种新编码方法通过减少孤立零数目和提高零树扫描效 率,在一定程度上克服了e z w 算法的不足,进一步提高了p s n r 值。 3 1 小波系数量化方法的选择 本章主要任务是将小波系数转化为字符流,使得所得的字符流的熵足够小, 以便

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论