




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三年级奥数鸡兔同笼问题教案 鸡兔同笼问题 例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析如果46只都是兔,一共应有446=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,562=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:鸡有多少只? (46-128)(4-2) =(184-128)2 =562 =28(只) 免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数兔总数-实际脚数)(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数 当然,也可以先假设全是鸡。 例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有1206=20(只).有鸡(100-20)=80(只)。 解:(2100-80)(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80只和20只。 例3红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人? 分析1我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。 结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少? 解法1: 一班:135-5+(7-5)3=1323 =44(人) 二班:44+5=49(人) 三班:49-7=42(人) 答:三年级一班、二班、三班分别有44人、49人和42人。 分析2假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少? 解法2:(135+5+7)3 =1473 =49(人) 49-5=44(人),49-7=42(人) 答:三年级一班、二班、三班分别有44人、49人和42人。 想一想:根据解法1、解法2的思路,还可以怎样假设?怎样求解? 例4刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? 分析我们分步来考虑: 假设租的10条船都是大船,那么船上应该坐610=60(人)。 假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。 一条小船当成大船多出2人,多出的18人是把182=9(条)小船当成大船。解:610-(41+1)(6-4) =182=9(条) 10-9=1(条) 答:有9条小船,1条大船。 例5有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只? 分析这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为618=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数113=13(对),比实际数少20-137(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7(2-1)=7(只). 解:假设蜘蛛也是6条腿,三种动物共有多少条腿? 618=108(条) 有蜘蛛多少只? (118-108)(8-6)=5(只) 蜻蜒、蝉共有多少只? 18-5=13(只) 假设蜻蜒也是一对翅膀,共有多少对翅膀?113=13(对) 蜻蜒多少只? (20-13)2-1)=7(只) 答:蜻蜒有7只. 习题 1.小华用二元五角钱买了面值二角和一角的邮票共17张,问两种邮票各买多少张? 2.有鸡兔共20只,脚44只,鸡兔各几只? 3.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个.问这几天当中有几天有雨? 4.蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只? 5.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件? 6.鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只? 答案1.解:二元五角=250分;1角=10分;2角=20分.假设都是10分邮票:1017=170(分)比实际少了多少钱?250-170=80(分)每张邮票相差钱数:20-10=10(分)有二角邮票多少张?8010=8(张)有一角邮票多少张?17-8=9(张) 答:二角的邮票有8张,一角的邮票有9张。 2.解:假设全是鸡,则可求得到兔子只数:(44-220)(4-2)=2(只) 鸡的只数:20-2=18(只) 答:鸡有18只,免有2只。 3.解:松鼠妈妈一共采了几天松子?11214=8(天) 假设8天全是睛天,一共应采松子208=160(个) 比实际采的松子多多少? 160-112=48(个) 晴天和雨天每天采的松子相差个数:20-12=8(个) 用晴天换雨天的天数:488=6(天)答:这几天中有6天有雨。 4.解:蜘蛛数:(140-621)(8-6)=142=7(只) 蝴蝶和蝉共有只数:21-7=14(只) 蝉的只数:(214-23)(2-1)=5(只)蝴蝶只数:14-5=9(只) 小学三年级奥数下册鸡兔同笼问题教案 鸡兔同笼问题 例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析如果46只都是兔,一共应有446=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,562=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:鸡有多少只? (46-128)(4-2) =(184-128)2 =562 =28(只) 免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数兔总数-实际脚数)(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 当然,也可以先假设全是鸡。 例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2100=200(只)这时兔的脚数为0,鸡脚比兔脚 多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有1206=20(只).有鸡(100-20)=80(只)。 解:(2100-80)(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80只和20只。 例3红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人? 分析1我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。 结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少? 解法1: 一班:135-5+(7-5)3=1323 =44(人) 二班:44+5=49(人) 三班:49-7=42(人) 答:三年级一班、二班、三班分别有44人、49人和42人。 分析2假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少? 解法2:(135+5+7)3 =1473 =49(人) 49-5=44(人),49-7=42(人) 答:三年级一班、二班、三班分别有44人、49人和42人。 想一想:根据解法1、解法2的思路,还可以怎样假设?怎样求解? 例4刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? 分析我们分步来考虑: 假设租的10条船都是大船,那么船上应该坐610=60(人)。 假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。 一条小船当成大船多出2人,多出的18人是把182=9(条)小船当成大船。 解:610-(41+1)(6-4) =182=9(条) 10-9=1(条) 答:有9条小船,1条大船。 例5有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只? 分析这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为618=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数113=13(对),比实际数少20-137(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7(2-1)=7(只). 解:假设蜘蛛也是6条腿,三种动物共有多少条腿? 618=108(条) 有蜘蛛多少只? (118-108)(8-6)=5(只) 蜻蜒、蝉共有多少只? 18-5=13(只)假设蜻蜒也是一对翅膀,共有多少对翅膀?113=13(对)蜻蜒多少只?(20-13)2-1)=7(只)答:蜻蜒有7只. 鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。鸡兔同笼问题 【例题讲解】 例1小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只? 分析:假设16只都是鸡,那么就应该有21632(只)脚,但实际上有44只脚,比假设的情况多了44-3212(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。 解:有兔(44-216)(4-2)=6(只), 有鸡16-610(只)。 答:有6只兔,10只鸡。 当然,我们也可以假设16只都是兔子,那么就应该有41664(只)脚,但实际上有44只脚,比假设的情况少了644420(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-22(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。有鸡(416-44)(4-2)=10(只), 有兔16106(只)。 由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。 【思维拓展训练一】 1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。 假设100人全是大和尚,那么共需馍300个,比实际多300140160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少312(个),因为160280,故小和尚有80人,大和尚有 1008020(人)。 同样,也可以假设100人都是小和尚,同学们不妨自己试试。 在下面的例题中,我们只给出一种假设方法。 2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套? 分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。 假设买了16套彩色文化用品,则共需1916304(元),比实际多30428024(元),现在用普通文化用品去换彩色文化用品,每换一套少用19118(元),所以 买普通文化用品248=3(套), 买彩色文化用品16313(套)。 例2鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只? 分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多20020=180(只)。现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少426(只),而180630,因此有兔子30只,鸡1003070(只)。 解:有兔(210020)(24)30(只), 有鸡10030=70(只)。 答:有鸡70只,兔30只。 1 【思维拓展训练二】 1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个? 分析:本题与例4非常类似,仿照例4的解法即可。 解:小瓶有(450-20)(42)30(个), 大瓶有50-3020(个)。 答:有大瓶20个,小瓶30个。 2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨? 分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。 利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下436=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144916(吨)。由此可求出这批钢材有多少吨。 解:436(45-36)45720(吨)。 答:这批钢材有720吨。 例3乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶? 分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.241.261.5(元)。因此共打破花瓶4.51.53(只)。 解:(0.24500115.5)(0.241.26)3(只)。 答:共打破
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025秋统编版三年级语文上册(2024)第七单元《习作 我有一个想法》练习题附答案
- 矿用维修工程车司机三级安全教育(公司级)考核试卷及答案
- 石油钻采设备装配检验工艺考核试卷及答案
- 石材磨边机校准工艺考核试卷及答案
- 柠檬酸发酵工上岗考核试卷及答案
- 2024新版2025秋青岛版六三制三年级数学上册教学课件:第6单元 美丽乡村-轴对称、平移和旋转现象 全单元(3课时)
- 信息技术试题及答案单招
- 服务心理学(第四版)课件 项目三 任务一 熟悉角色理论
- 自动化生产线设计调试常见问题及处理方法试卷
- 2025年XX学校临床医学专业大学生生涯发展展示
- ISO 15609-1 金属材料焊接工艺规程及评定-焊接工艺规范中文版
- 人居环境科学市公开课一等奖省赛课微课金奖课件
- 高级电工证考试题库电工考试题库
- 2023译林版新教材高中英语选择性必修第一册同步练习-Unit 1 Food matters
- 糖尿病足中医辩证治疗
- 脑膜瘤的护理诊断与护理措施
- 铝合金门窗安装流程
- T-ZJFS 010-2024 银行业金融机构转型贷款实施规范
- 高职应用语文教程(第二版)课件 1《老子》三章
- 药物临床试验突发事件应急预案
- 施工升降机安装拆卸安全教育
评论
0/150
提交评论