




已阅读5页,还剩52页未读, 继续免费阅读
(课程与教学论专业论文)高中新课程实施中学生数学能力培养的实践研究.pdf.pdf 免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要 数学能力是人们认识数学、学习数学、使用数学的必不可少的能力,它对人 类认识世界起到了不可替代的作用。伴随着时代的发展和科技的进步,人们更加 认识到掌握数学的根本是掌握各种必不可少的数学能力。正因为如此,世界各国 都非常重视对学生数学能力的培养。多年来各国的数学课程改革也都不断加强对 学生掌握数学能力的要求。 2 0 0 7 年是我国高中数学新课程改革全面实行的一年,也是吉林省高一年级开 始使用人教社a 版新教材的第一年。新课程改革提出了高中数学教育的全新理 念,这必将对中国的数学教育产生深远的影响。本文作者在高中教育实习期间有 幸经历了这一改革实施的过程,并对新课程改革中的强调的“数学能力”培养的 实施进行了调查和了解。 本文认为,新课程改革后的高一数学课程相比之前更加生动、细致,重视数 学的应用,更加生活化,对学生和教师提出的各方面要求也更高,教师基本都能 理解新课程理念并创造性的运用于教学之中,但往往忽视旧有的基础训练,导致 学生的基础知识和基本技能欠缺,进而影响能力的形成。同时新课程对学生的要 求大大提高以及初高中课程衔接不好也引起学生新学期的不适应。此外评价制度 的落后等问题也进一步阻碍了新课程改革的顺利进行。 针对这些新课程改革实践中的问题,本文提出了对高中生数学能力培养的一 些途径和方法:打好基础与发展能力并重:多样化教学目标,兼顾不同层次的学 生;促进教师发展,应对新课程挑战;学校通过校本课程积极调整;对学生实行 多元评价;增强初高中数学课程的衔接与贯通;加快高考的改革。 关键词:数学能力:新课程改革;高中生;能力培养 a b s t r a c t m a t h e m a t i c a la b i l i 够i st h ea b i l i 够t h a ti sn e c e s s a 巧f o rp e o p l et oc o g n i z e ,l e 锄, a n d 印p l ym a t h e m a t i c s i tf u l f i l si 玎e p l a c e a b l e 向n c t i o n sf o rp e o p l e sc o g n i t i o no ft h e w o r i d w i t ht h ed e v e i o p m e n to ft h ea g ea n dt h ea d v a n c e m e n to ft e c l l n o i o g y ,p e o p l e m o r ec l e a r l yr e a l i z et h a tt h ef o u n d a t i o no fm a s t e r i n gm a t h e m a t i c si st oa c q u i r ea l l k i n d so fe s s e m i a lm a t l l e m a t i c a la b i l i t i e s j u s tb e c a u s eo ft h i s ,a uc o u n t r i e st h o u g h o u t t h ew o r l da t t a c hs p e c i a la t t e n t i o nt oc u l t i v a t i n gs t u d e n t s m a t h e m a t i c a la _ b i l i t y f o rt h e p a s tm a n yy e a r s ,l ec u 盯i c u l a rr e f o r m s o fm a t h e m a t i c si na l lc o u n t r i e sh a v e c o m i n u a l l ys t r e n 舀h e n e dt h er e q u i r e m e n t so fs t u d e n t s m a t h e m a t i c a la b i l i t y i n2 0 0 7 , t h en e wc u r t i c u l a rr e f o 吼o fm a t h e m a t i c si nc h i n aw a sm l l yi m p l e m e n t e d d u r i n g m i sy e a r ,i nj i l i np r o v i n c e ,s e n i o r h i 曲s t u d e n t si n 研a d eo n e b e g a i lt ou s en e wc o u r s e b o o k sp u b l i s h e db yt h ep e o p l ee d u c a t i o np ! e s s ( e d i t i o na ) t h en e wc u r r i c u l a r r e f o mp r o p o s e sac o m p l e t e l yn e wc o n c e p to ft h em a t h e m a t i c a le d u c a t i o ni ns e n i o r h i g h s ,w h i c hw i l lc e r t a i n l yh a v ep r o f o u n di n n u e n c eo nm em a t h e m a t i c a le d u c a t i o ni n c h i n a w h i l eb e i n gas t u d e n t t e a c h e ri nas e n i o r h i 曲s c h o o l ,t h ea u t h o ro ft h i st h e s i s e x p e r i e n c e dt h ep r o c e s so fi m p l e m e n t i n gt h i sr e f o r m ,a n dm a d ear e s e a r c ho na i 】【dg o t f a m i l i a rw i t ht h ei m p l e m e n t a t i o no fc u l t i v a t i n g “m a t h e m a t i c a la b i l i t y ”e m p h a s i z e db y t h en e wc u r r i c u l a rr e f o n n i nt h eo p i n i o n so ft h i sp a p e r ,a f t e rt h en e wc u 盯i c u l a rr e f o r m ,t h em a t h e m a t i c a l c o u r s e so ft h eg r a d eo n ei ns e n i o rh i 曲sa r em o r ev i v i d ,s p e c i6 c ,e m p h a s i z et h e a p p l i c a t i o no fm a t l l e m a t i c s ,觚dh e n c ea r em o r ec l o s et or e a ll i f e f u n :h e 眦o r e ,m e r e q u i r e m e n t s o fa n a s p e c t st o t e a c h e r sa n ds t u d e n t sa r eh i 曲e lt e a c h e r sc a i l u n d e r s t a l l dt h ec o n c e p t so ft h en e wc u m c u l a rr e f b 姗,a n da p p l yt h e s ec o n c e p t st o t e a c h i n gw i t ht h e i ro w nc r e a t i v i t y h o w e v e r ,t h ep r e v i o u sb a s i ce x e r c i s e sa r eu s u a l l y n e g l e c t e d ,、v h i c hl e a d st ot h es t u d e n t s l a c ko f b a s i cl ( i l o w l e d g ea n ds k i l 王s ,a f l df u r t h e r i n f l u e n c e sm ec u l t i v a t i o no fs t u d e n t s a b i l i t y f u n h e r m o r e ,s t u d e n t sc 籼o tg e tu s e dt o t h en e ws e m e s t e r ,b e c a u s et h eg r e a t l yh i g h e rr e q u i r e m e n t st os t u d e n t sp r o p o s e db yt h e n e wc u r r i c u l ar e f o m la n du n s a t i s 聊n gt r a n s i t i o nb e “e nj u n i o ra n ds e n i o r1 1 i g h s c h o o l s f o c u s i n go nt h e s ep r o b l e m si n l ep r a c t i c eo ft h en e wc 嘶c u l a rr e f o 啪,m i s t h e s i sp u t sf o n ,a r ds u c hm e t h o d sa sa t t a c h i n ga t t e n t i o nt ob o t ho fl a y i n gg o o d f o u i l d a t i o na n dd e v e l o p i n gs k i l l s ,v e r i 母i n gt e a c h i n ga i m ss o a st o c o n s i d e r i n g s t u d e n t sa td i 舵r e n tl e v e l s ,i m p r o v i n gt h ed e v e l o p m e n t so ft e a c h e r si no r d e rt of a c e t 1 1 ec h a l l e n g eo ft h en e wc u 玎i c u l a rr e f 0 姗s ,a c t i v e l ya d j u s t i n gt h r o u 曲s c h 0 0 1 b a s e d c o u r s e s ,e v a l u a t i n gs n l d e n t sf r o mv a r i o u sa s p e c t s ,s t r e n g t h e n i n gt h et r a l l s i t i o na n d h a r m o n yo fm a t h e m a t i e a l c o u r s e sb e t 、v e e nj u n i o ra n ds e n i o rk g hs c h 0 0 l s ,a n d h a c c e l e r a t i n gt h er e f o mo ft h ee n t m c ee x 锄i n a t i o nt oc o l l e g e s k e yw o r d s :m a t h e m a t i c a la b i l i t y ;n e wc u 玎i c u l a rr e f o m ;s 觚0 rl l i g l l s c h o o l s t u d e n t s :c u l t i v a t i o no fa b i l i t i e s l i i 独创性声明 本人郑重声明:所提交的学位论文是本人在导师指导下独立进行研究工作所取得 的成果。据我所知,除了特别加以标注和致谢的地方外,论文中不包含其他人已经发 表或撰写过的研究成果。对本人的研究做出重要贡献的个人和集体,均已在文中作了 明确的说明。本声明的法律结果由本人承担。 学位论文作者签名:弛盎日期:竺仝室:堑:z 学位论文使用授权书 本学位论文作者完全了解东北师范大学有关保留、使用学位论文的规定,即:东 北师范大学有权保留并向国家有关部门或机构送交学位论文的复印件和电子版,允许 论文被查阅和借阅。本人授权东北师范大学可以采用影印、缩印或其它复制手段保存、 汇编本学位论文。同意将本学位论文收录到中国优秀博硕士学位论文全文数据库 ( 中国学术期刊( 光盘版) 电子杂志社) 、中国学位论文全文数据库( 中国科学技 术信息研究所) 等数据库中,并以电子出版物形式出版发行和提供信息服务。 ( 保密的学位论文在解密后适用本授权书) 学位论文作者签名:越 日 期:堡星! ! :f 学位论文作者毕业后去向: 工作单位: 通讯地址: 指导教师签名:雄 电话: 邮编: 东北师范大学硕士学位论文 引言 关于数学能力的概念,早在上世纪前期就被学者们提出。w 贝兹认为,数 学能力是“清楚地认识数学关系的内部联系和用数学概念正确思维的能力 :a 温 兹尔把数学能力定义成“建立数学材料之间有意义联系的能力”;a m 布拉克 韦尔认为,是“在定量关系( 定量思维) 范围内选择性思维和演绎推理的能力,以 及在数、符号、几何图形范围内把一般原理用于特殊情况的能力”。i 魏林德把 数学能力定义为“理解数学的( 以及类似的) 问题、符号、方法和证明的本质的功 能是学会它们,在记忆中保持和再现它们的能力;是把它们同其他问题、符号、 方法和证明结合起来的能力;在解答数学( 或类似的) 课题时运用它们的能力。” 克鲁捷茨基从两个方面来看待数学能力的概念:( 1 ) 看作创造性( 科学的) 能力 科学的数学活动方面的能力,这种能力能产生对人类有意义的新成果和新成 就,对社会做出有价值的贡献。( 2 ) 看作一般学习能力学习( 学会、掌握) 数 学( 中小学数学课程) 的能力,迅速而顺利地掌握适当的知识和技能的能力 。现 代数学教育理论普遍认为,数学能力是一种与数学活动有关的特殊的能力,数学 能力是顺利完成数学活动所具备的,而且直接影响其活动效率的一种个性心理特 征,它是在数学活动过程中形成和发展起来的,并在这类活动中表现出来的比较 稳定的心理特征。1 人类认识自然界的一个重要方面就是认识自然界的各种数量关系和形状、空 间概念,并通过利用这些数量关系和形状、空间概念改造自然。这就要求人们从 数学知识的总汇中,挑选最精华的部分,以最佳的方式、方法进行学习;并注意 重视开发智力,培养自己获得新知识的能力。而随着时代的发展,这种获得数学 知识的能力的重要性日益凸显。在以信息和技术为基础的社会里,数据、符号日 益成为一种重要的信息,为了更好地认识客观世界,人们必须学会处理各种信息, 尤其是数字信息。收集、整理与分析的能力已经成为信息时代每一个公民的基本 素养的一部分。因此,现代社会的公民需要对这些纷繁复杂的信息做出恰当的选 择和判断。这就必须要具有一定的实验观察、信息获取、数据处理、模式识别、 抽象概括、合情推理、逻辑证明、探究创新等能力,并且要能够有效地联系、建 立、表达与交流等。另外,全球化社会的发展要求人们具备开放性思维与创新精 神,需要与世界各地的人们进行交流、联系、合作等,这就要求我们要有更多更 1 叶建红新形势下数学能力及其培养l d 】:【硕士学位论文】福州:福建师范人学,2 0 0 3 1 东北师范大学硕士学位论文 强的、富有时代发展性的数学能力。基于这种目的,世界各国都在中小学的课程 改革中,不断地对培养学生的数学能力提出新的要求,这在我国新一轮高中课程 改革中更有新的体现。 从上世纪9 0 年代中期我国开始酝酿第八次基础教育课程改革。通过大规模 的教育调查研究,指明了我国基础教育在人才培养目标、课程设置和课程实施各 个环节中存在的问题:通过大量的有关国家基础教育现状和发展趋势的国际比较 研究,找到我国基础教育与国际发达国家和发展中国家在人才培养方面的差距, 并在此基础上确立了新世纪我国基础教育课程改革方向和具体目标。2 0 0 1 年, 教育部印发了基础教育课程改革纲要( 试行) ,标志着新世纪基础教育课程改 革正式启动。这个纲要直接切入了普通高中课程培养目标、课程内容、课程 结构、课程实施、考试评价和课程管理等教育的核心领域,引发了高中教育全面 的变革。有评论说,这次高中课程改革是建国以来最为广泛、最为深刻的一次改 革。 课程目标的改革是课程改革中具有前提意义因而也是具有领引价值的最为 引人注目的项改革。高中新课程中,课程目标的改革具有很大的突破性,与我 国建国以来任何一次高中课程方案比较起来,更具有多样性、灵活性和开放性。 概而论之,新一轮高中课程改革目标和内容包括:( 1 ) 对普通高中学生的培养目 标上进行了较大幅度的调整;( 2 ) 在课程内容上做了较大程度的精选,强调课程 内容与时代发展、科技进步和社会生活以及学生经验的联系;( 3 ) 在课程结构上 一改统一性和简单机械进行文理分科的要求,突出课程设置的多样性、层次性、 选择性和综合性,淡化了文理分科的痕迹;( 4 ) 提倡教学改革,改变教师的教学 方式和学生的学习方式,关注学生的主动学习和能力培养;( 5 ) 提倡改变过于注 重结果的终结性评价,倡导建立立足于发展性和过程性的综合评价;( 6 ) 改变过 于集中的课程管理权限,赋予学生合理而充分的课程自主权。 通过从高中新课程标准中对“数学能力的要求这一视角切入的本项研究, 能更进一步领会高中新课程目标的意义价值;通过对数学能力培养的课堂实现的 研究,能更进一步推进高中数学新课程目标的实践途径和实践方式。 2 东北师范大学硕士学位论文 第一章我国高中课程“数学能力要求 的历史回顾与现实 表达 课程是人类文化的传播样式。课程不仅表征人类财富,更昭示人类理想。中 国既是一个人口大国,更是一个教育大国。在坚持社会公正、倡导教育公平、保 障公民受教育权利的大前提下,基础教育的课程建设一直受到中央政府的高度关 注。基于社会发展与人的发展的需求,课程的建设不断地改进目标、消除积弊、 调整结构、优化内容。今天我们直面的中国基础教育史上的第八次课程改革,正 是基于一个新的历史站位,以博大的国际视角和渊源的历史眼光,对基础教育课 程建设的又一个创新! 这其中,数学是基础性的核心课程,“数学能力”培养鬈 是数学课程的亘古不变的最重要的教学目标。 思 一、我国高中课程改革对学生“数学能力要求的历史回顾与反 能力的培养是高中新课程改革最重要的一个价值取向,这个价值取向在新课 程标准中,有最直观、最具体的表征。同理,对学生数学能力的培养也充分地体 现在高中数学的新课程标准中。 人类认识自然界的一个重要方面就是认识自然界的各种数量关系和形状、空 间概念,并通过利用这些数量关系和形状、空间概念改造自然。随着时代的发展, 在以信息和技术为基础的社会里,数学能力也已经成为每一个公民的基本素养的 一部分。全球化社会的发展要求人们具备开放性思维与创新精神,需要与世界各 地的人们进行交流、联系、合作等,这就要求我们要有更多更强的、富有时代发 展性的数学能力。对人的数学能力的要求是一个与时俱进的过程,这必定要反映 在教育的课程标准的不断变革和要求的不断提高中。 ( 一) 高中数学课程改革历程中对学生。数学能力要求一的演进 我国早在六十年代初就在课程改革中提出过“数学能力”的概念。 1 9 6 3 年,我国制定的全日制中学数学教学大纲( 草案) 中首次提出 东北师范大学硕士学位论文 “培养学生正确而迅速的运算能力、逻辑思维能力和空间想象力的要求,第一 次将培养学生“三大能力 作为数学教学目的。 1 9 7 8 年我国制定的全日制十年制学校中学数学教学大纲( 试行草案) 中,又提出了“逐步培养学生分析问题和解决问题的能力”,这是数学课程目标 的又一进步,也体现了现代数学教育中不断发展对解决数学问题的认识和实践趋 势。 1 9 8 2 年我国公布的全日制六年制重点中学教学大纲( 征求意见稿) 开始注意知识、技能与能力的关系,指出:学生的能力是通过知识、技能的掌握 而形成和发展起来的,这些能力一经具备,又有助于学生更好的去获取知识和运 用知识,并明确提出了“逐步形成运用数学来分析和解决实际问题的能力”。 1 9 8 6 年,我国在全日制中学数学教学大纲中正是把“双基和“三 大能力 作为中学数学教学目标的核心内容。 2 0 0 2 年我国推出的全日制普通高级中学数学教学大纲中,又将“三 大能力 中的“逻辑思维能力”改为“思维能力”。圆 总之,随着我国数学课程改革的不断推进,对数学能力的要求从具体到抽象、 从低级到高级、从知识到能力,要求越来越明确,标准越来越高,重心不断地从 知识要求转移向更宏观的能力要求。逐步形成了“双基 和“三大能力”并重的 较完善的课程体系。 数学能力要求的历史演进过程,基于对人类社会的发展和科技进步的要求的 认识;基于对世界各国课程目标的研究;基于我国社会主义建设事业对人才结构 的需求的理解。每出台一个新的数学教学大纲,每一次新的数学能力要求的 提出,都基于对旧有数学课程标准的反思;都体现那令特定时代的对人才结构类 型的诉求。 ( 二) 对旧有高中搿数学能力要求开的反思性评价 我国多年来的数学课程改革取得了很大的成就。譬如:注重“双基的学习, 追求基础知识的扎实和基本技能的熟练;规范的、统一的课程管理和学习要求, 使学生在学习中有明确的达成目标和测评依据,也保证了定的学习效果,使我 国数学课程有了看重基础、要求严谨、强调熟练的教学特色。但随着时代的进步 和课程理念的不断发展,旧课程也表现出越来越多的不足,这在数学能力要求方 面尤其明显。 在数学课程目标上,知识本位权重过大。从6 0 年代开始,“双基就成为数 学学习目标的主要内容。在此引导下的课程实旌,越来越体现对基础知识、基本 技能的关注。在有些地方甚至是唯一的课程目标。在课堂教学中表现为“依纲唯 盘严士健,张奠宙,王肖志主编普通高中数学课程标准( 实验) 解读【m j 青京:江苏教育出版社,2 0 0 4 。3 5 3 6 4 东北师范大学硕士学位论文 本 ,注重知识传授,注重解题技能技巧训练,忽视对数学能力、数学情感、态 度和价值观的培养。 在学习内容上,旧有课程过分追求逻辑的严谨性和体系的形式化。在不同程 度上存在“繁、难、偏、旧”的状况,且与社会实际脱节,没有很好的体现数学 知识的背景与应用,没有体现出时代的发展和科技的进步,学生对数学的应用和 实践能力意识薄弱。 在课程结构上,学校集中力量开设或加开“大一统 的必修课,没有多元化 的课程结构,没有选修与活动,把学生的知识视野局限于必修教材,没有知识的 拓展与外延,使学生只有数学知识灌输,而没有数学能力的实践练就。 在学习方式上,教师的“灌输式 课堂,使学生以被动接受学习为主,忽视 对主动获取数学知识以及学会学习的能力、态度、习惯、方式的培养。学生缺少 自主探索、合作学习、独立获取知识的机会。学生的自学能力和创新精神得不到 关注与培养。 在学习评价方面,旧课程评价的方式单一,注重结果性评价,忽视对学习过 程和方式的评价;考试成了甄别和选拔学生的主要评价手段,考试中又以基础知 识和基本技能的评价为主,缺乏对数学能力的评价;考试结果的处理方式缺乏科 学性,不利于学生形成积极正确的学习态度和培养对数学的兴趣;缺乏反应学生 全面发展状况的评价制度。 在2 0 0 0 年的教育部高中处的一项课程改革调查中表明:6 9 8 的学生认为学 校教育实际关注的是基础知识和基本技能;6 9 8 的学生反映学校没有开设选修 课:只有1 2 的学生喜欢以老师讲授为主的课堂教学方式,而却有8 6 7 的学生 喜欢有较多的动手操作、亲身实践、讨论交流或自学等课堂教学方式。可见高中 数学课程的设置与教学方式也到了非改不可的程度! 二、我国高中新课程改革对学生数学能力的要求 “调整和改革课程体系、结构、内容,建立新的基础教育课程体系”,是中 共中央、国务院做出的关于深化教育改革,全面推进素质教育的决定的主要 任务。这是新时期国家改革人才培养模式、加快培养创新型人才的战略举措,是 全面贯彻落实党的教育方针、全面实施素质教育的关键环节和制度建设。在此背 景下,2 0 0 1 年教育部印发了基础教育课程改革纲要( 试行) ;2 0 0 3 年制定并 颁布了普通高中数学课程标准( 实验) 。 这个新的普通高中数学课程标准,很好地体现了我国高中阶段数学教育 的十条基本理念:构建共同基础,提供发展平台;提供多样课程,适应个性选择; 东北师范大学硕士学位论文 有利于形成积极主动、勇于探索的学习方式;有利于提高学生的数学思维能力: 发展学生的数学应用意识;用发展的眼光认识“双基 ;返璞归真,注意适度的 形式化:体现数学的文化价值;注重信息技术与数学课程的整合:建立合理、科 学的评价机制。在此基本理念下制定了高中数学课程的总目标:在九年义务教 育数学课程的基础上,使学生获得作为未来公民所必要的数学素养,以满足个人 发展与社会进步的需要。 在新数学课程标准中,对数学教学目标具体阐述有如下六个方面: 第一,获得必要的数学基础知识和基本技能理解基本的数学概念、数学结论 的本质,了解它们产生的背景、应用和在后继学习中的作用,体会其中的数学思 想和方法; 第二,提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能 力; 第三,在以上基本能力基础上,初步形成数学地提出、分析和解决问题的能 力、数学表达和交流的能力,逐步地发展独立获取数学知识的能力; 第四,发展数学应用意识和创新意识力求对现实世界中蕴涵的一些数学模式 做出思考和判断; 第五,提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精 神和科学态度; 第六,具有一定的数学视野,初步认识数学的应用价值、科学价值和文化价 值,逐步形成批判性的思维习惯,崇尚数学的理性精神,从而进一步树立辩证唯 物主义世界观。 其中第2 条对数学能力提出明确的要求,将我国数学教育中传统的“三大能 力”发展为“提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本 能力 这“五大能力”。 空间想象能力是人们对客观事物的空间形式进行观察、分析和抽象思维的能 力。具体是指对立体图形以及平面图形与立体图形之间关系的理解能力,包括能 看懂几何图形,对立体图形的三个面的理解力,识别物体在空间运动中的联系, 解决几何问题。空间观念和空间想象能力,是学生理解数学知识、掌握计算公式、 提高应用题解题能力不可忽视的素质。 对于空问想象能力,标准要求更加关注通过对整体图形的把握去培养和 发展空间想象能力:关注在空间想象能力培养中人的认识规律,概括了人们认识 和探索几何图形的位置关系和有关性质的规律,建议通过“直观感知、操作确认、 思辨论证、度量计算”等学习过程,培养和发展空间想象能力。 数学抽象概括能力是数学思维能力,也是数学能力的核心。它具体表现为对 概括的独特的热情,发现在普遍现象中存在着差异的能力,在各类现象间建立联 6 东北师范大学硕士学位论文 系的能力,分离出问题的核心和实质的能力,由特殊到一般的能力,从非本质的 细节中使自己摆脱出来的能力,把本质的与非本质的东西区分开来的能力,善于 把具体问题抽象为数学模型的能力等方面。提高学生的抽象、概括能力对于学习 数学有着十分重要的意义。学生抽象、概括能力越高,在学习中的迁移能力就越 强,对新的知识的理解和掌握也就越快。同时,抽象、概括是思维最重要的特点。 只有通过抽象、概括才能使人的认识由感性上升到理性,从而掌握事物的本质和 规律。因此,抽象、概括的水平在一定程度上反映了学生的思维水平。 对于抽象概括能力,标准要求能从具体事物中区分、抽取研究对象的本 质特征,即抽象概括通。过抽象概括的过程,认识和理解数学概念和结论。 推理过程是由一个或几个己知的判断( 前提) ,推导出一个未知的结论的思维 过程。其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉 经验掌握的未知知识。推理能力是一个人应具备的重要能力之一,每个人都应在 思考、交流的过程中做到清晰、有条理、合乎逻辑。推理包括逻辑推理和合情推 理,在数学的研究发展过程中,既需要通过观察、实验、归纳、类比等获得数学 猜想,也需要通过逻辑推理来验证结论的正确性。对于推理论证能力,标准 的要求除了演绎推理外,又加入了数学发现、创造过程中的合情推理,如归纳、 类比等合情推理。 运算能力是思维能力和计算技能的结合,包括分析运算条件、探究运算方向、 选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过 程中遇到障碍而调整运算的能力。 对于运算求解能力,标准要求避免繁杂的计算和过于人为的、技巧性过 强的运算,但对估算能力、使用计算器和计算机的能力、求近似解的能力提出要 求,并关注运算的算理和算法。 标准中还加强了数据处理能力的训练,在统计模块中强调必须通过典型 案例的处理,让学生经历收集数据、处理数据、分析数据、从数据中提取信息做 出判断的全过程,并在经历过程中学会运用所学知识、方法去解决实际问题。 在以上基本能力基础上,标准还要求使学生“初步形成数学地提出、分 析和解决问题的能力,数学表达和交流的能力,逐步地发展独立获取数学知识的 能力”。这是“标准”对数学能力的进一步要求。对这方面能力内涵的深化是: 在培养数学地提出、分析和解决问题能力的同时,还要求培养和发展学生的数学 表达和交流能力。 所谓数学交流是指用数学语言来传递信息和情感的过程。交流需要表达,交 流与表达是密不可分的。交流对于加强对数学的认识和理解有重要作用,在交流 的过程中,可以更好地理解和使用数学语言和符号,可以组织和强化学生的数学 思维,同时通过思考他人的想法和策略丰富和扩展自己的知识和思维。无论是 7 东北师范大学硕士学位论文 在通常的数学学习中,还是在数学探究、数学建模等数学活动中,数学表达和交 流都是必不可少的能力。 “提出问题是我国数学教育中的一个薄弱环节。事实上,在中学数学教育 中,学习提出问题、学会提问题是创新意识和创造能力培养的一个非常重要的方 面。“标准在内容中将“数学探究、数学建模、数学文化”作为贯穿整个高中 数学课程的重要活动,渗透或安排在每个模块或专题中,意在强调如何引导学生 去发现问题、提出问题。 “发展独立获取数学知识的能力 ,这是“标准 对能力的一个新要求, “标准”意在培养和发展学生懂得如何学会学习、如何独立思考、如何根据问题 的需要去阅读有关书籍、选择必要的参考资料、如何通过交流获得信息等方面 的能力。提出这一新的要求,一方面是针对目前中学数学教育中的问题,同时也 是知识经济时代知识更新周期日益缩短对人才培养的一个要求。 总的来看,新课程数学能力目标一方面更切合学生实际,以思维能力为核心, 全面培养学生的各种能力,强调综合性、应用性、探究性和开放性;另一方面, 扩大了能力培养的范畴,加大了能力培养的力度,重视实践能力,强调学生综合 运用所学数学知识、思想方法解决问题。新课程更把各项能力提升到创新意识, 如选择有效的方法手段搜集信息,综合与灵活的应用所学的数学知识、思想和方 法进行独立的思考、探索和研究,提出解决问题的思路,创造性的解决问题。 傅海伦主编数学新课程理念与实旌【m 】济南:山东教育出版社,2 0 0 4 1 - 4 2 8 东北师范大学硕士学位论文 第二章数学能力要求的国外比较及借鉴 为了培养具有国际竞争力的人才,各国开始着手从全球大背景出发来整体设 计课程体系、组织和分配知识结构,建构具有世界水平的课程。对中国来说,基 础教育课程改革要迎接全球化挑战,我们特别关注以下两个方面问题: 一是课程目标要体现全球精神。目标是课程的灵魂,它体现着对学生素质的 基本要求。虽然世界各国应对全球化的课程策略并不一定是开设具体的、特定的 全球化科目,但却无一例外地都规定了全球化的课程目标。 二是课程结构要保证均衡发展。全球性知识资源的开发不可避免地要带来课 程负担的加重,如何在保证全球性知识的获得与减轻学生过重的课业负担之间保 持恰当的平衡,是中国课程改革的一个难题。 在高中数学课程改革中,吸纳与借鉴其他国家的改革经验就显得更具有重要 价值。 一、各国课程改革中都在加强对数学能力的要求 ( 一) 美国学校数学的原则与标准在数学能力方面的要求 美国在2 0 0 0 年总结了自1 9 8 9 年的美国全国数学教师联合会1 9 8 9 年公布学 校数学课程与评估标准,同时根据美国各地数学教学经验和意见,提出了新课 程标准学校数学的原则与标准( n c t m ,2 0 0 0 ) 。新标准提出了数学教学的 六项原则:平等原则( e q u it y ) 、课程原则( c u r r i c u l u m ) 、教学原则( t e a c h i n g ) 、 学习原则( l e a r n i n g ) 、评定原则( a s s e s s m e n t ) 、技术原则( t e c h n 0 1 0 9 y ) 。同时, 学校数学的原则与标准为中小学四个学段的学生设立了十条标准,包括数与 运算、代数、几何、测量、数据分析与概率、问题解决、推理与证明、交流、关 联、表达。这些标准直接或间接地表达了对数学能力的要求。 如数与运算标准要求“理解数字,数字的表达方法,数字时间的关联以及数 系;理解运算的含义以及各种运算之间的关联;熟练的进行计算并能做出恰当的 估算”;代数标准要求“理解模式、关系和运算:使用代数符号表达和分析数学 情景和结构:使用数学模型表达和理解定量关系;分析各种情境中的变化”;几 9 东北师范大学硕士学位论文 何标准要求“分析二维和三维几何形状的特征和性质并建构有关几何关联的数学 证明;使用坐标几何和其他表示体系确定位置并描述空间关系;运用变换和对称 分析数学情境;使用视觉化、空间推理和几何模型解决问题”。这些与我国对运 算能力尤其是对算理、算法的理解和估算能力要求;对代数的抽象概括能力;对 空间想象力的要求是一致的。 另外学校数学的原则与标准中对于数据分析、逻辑推理证明、数学问题 解决、数学的表达与交流等方面的能力提出了更全面更高标准的要求。如标准中 提到“提出并评价基于数据的推断和预测;通过问题解决建立新的数学知识;提 出并探索数学猜想;提出并评价数学论据和证明;分析和评价他人的数学思想和 策略;使用表达建模和解释物理、社会和数学现象等。 ( 二) 英国2 0 0 0 年国家数学课程在数学能力方面的要求 英国的国家数学课程源于1 9 8 8 年国会通过的教育改革法案,又经历三套 国家课程标准的实施,2 0 0 0 年英国发展了前几套国家课程标准的理念,施行了 新的国家数学课程该国家课程主要由学习纲要和成绩目标组成。学习纲要阐述了 不同能力发展水平的学生应该受到教学的内容,成绩目标列出了对学生学业表现 的期望标准。 英国国家课程给出了关于各个学段的学习纲要的总体说明。其中将第四学段 ( 1 0 1 1 年级) 的数学划分为“基础”和“高级”两个层次,“高级层次要求 学生承担相对于“基础”层次更多的计划与执行学业任务的责任;计算技能进一 步发展至包括对幂、根和以科学计数法表示的数的运算;懂得数学上精确和严格 的重要性;熟练的应用比例推理,发展代数运算和简化的技能;扩展对函数及其 图像的知识,求解各种方程,包括那些非整数系数的方程;使用有限步的演绎推 理,给出证明,并开始理解证明在数学中的重要性;使用定义和形式化推理描述 和理解几何图形以及相互见的逻辑关系;通过使用包括取样在内的广泛的技能和 技术的实践活动,学习数据处理;发展解决不熟悉问题和恰当使用 i c t ( i n f o r m a t i o n a n dc o m u n i c a t i o n st e c h n o l o g y ) 的自信心与灵活性;通过认 识到数学作为解决问题的一种分析工具的重要性,学习欣赏数学的独特力量。 在教学内容的安排上,学习纲要按三大知识块:“数与代数 、“形状、空间 与测量 和“数据处理”,具体的阐明了每一学段在这些内容上有关知识、技能 和理解的要求。值得强调的是,在三大知识块中,学习纲要均把“使用和应用数 学列为第一项要求贯穿于各个学段。而“使用和应用数学 分“问题解决”、 “交流 和“推理”三方面论述。 学习纲要也给出了总体上的一般教学要求,包括适合于所有科目的国家课程 孙晓天主编数学课程发展的国际视野【m 】| 匕京:高等教育出版社,2 0 0 3 1 2 - 1 8 1 0 东北师范大学硕士学位论文 的教师应遵循的三项教学原则: 一是“设立适当的学习挑战。主要体现在,教师应给每一个学生创造在学 习上成功的机会和达到尽可能高的水平的机会。对某一学段成绩在和大程度上落 后于期望水平的学生,有必要实施力度要大得多的适应个性差异的教学。而对某 一学段成绩在很大程度上高于期望水平的学生,教师需要为他们安排适合的有挑 战的学习任务 二是“适应学生的不同的学习需要 包括,教师应为所有学生设立并提供机 会帮助他们达到高的期望标准;要考虑学生的不同经验、背景、兴趣、能力和教 育需要,合理安排教学方法是所有学生能充分的和有效的参与课堂教学过程。 三是“克服学生个人或群体在学习和评定方面潜在的障碍”。学习纲要对该 原则分有特殊需要的学生、有残疾的学生和学习英语作为另加语言的学生这三个 部分加以论述,说明了具体的建议个重要性。 ( 三) 日本高中学习指导要领在数学能力方面的要求 1 9 9 6 年8 月,根据日本中央教育审议会发表的题为关于面向2 l 世纪的我 国教育的咨询报告,就课程改革的方针、课程体系的构建、学科教育的内容等 问题进行了研讨,最终确定了课程改革的目标:培养具有丰富的人性和社会性, 具有自立于国际社会的日本人的意识;培养学生的自我学习能力和独立思考的能 力;通过开展宽松的教育活动,切实加强基础,充实发展个性的教育;使各学校 能够发挥主动,创造出有特色的教育。文部省以此为基本方针,制定了新的学习 指导要领。 学习指导要领的总体目标是“加深理解数学的基本概念、原理和法则, 提高数学的考察和处理事物的能力,通过数学活动培养创造性的基础。同时,认 识数学的看法和思考方法的好处,培养积极主动地灵活运用的态度。” 新的目标重视基础知识的理解、能力和态度的培养;重视对数学思想方法优 越性的认识,并在此基础上又有所发展,增加了“通过数学活动培养学生创造性 的基础”。创造性的基础不仅包括自学能力、逻辑思维能力、表达力、判断力、 想象力、直觉能力,还包括欣赏数学表现和处理的美、领会数学思想方法的优越 性等丰富的感情。而数学活动一般包括观察、操作、实验等外部的操作性活动和 类推、归纳、演绎等内在的思维活动。 通过数学活动,使学生认识到数学与现实生活的联系,数学在人类文化和社 会生活中的作用,增强应用数学的意识,学会运用数学解决实际问题的方法。在 解决问题、探索知识、构建知识的过程中,使学生认识到数学的价值,享受到创 造的乐趣和学习的充实感。其宗旨是提高学生对数学学习的兴趣和关心,培养学 孙晓天主编数学课程发展的国际视野【m 】北京:高等教育出版社,2 0 0 3 5 4 巧7 1 1 东北师范大学硕士学位论文 生运用数学知识、方法考察和处理事物现象的态度,提高学生问题解决能力和逻 辑思维能力,使学生能够积极主动的进行探索,发现问题、解决问题,创造出新 的数学知识,将学生的数学学习从被动学习转移到主动学习上来。 = 、“数学能力要求 的比较与借鉴 比较而言,美国高中数学课程改革的最大特色是强调信息技术在数学教学中 的重要地位。学校数学的原则与标准认为电子技术是教数学、学数学和做数 学的必要工具;有了技术的援助,学生就能更加专注于将决策的确定、思考、推 理和问题解决;恰当的使用技术可以帮助学生学习更多的数学并对数学有更深刻 的理解。对此新课程标准鼓励学生使用计算器,并在教学中给出了大量的计算机 技术的教学范例。 英国高中数学课程也有其鲜明的本质特色。英国的国家课程对水平较高的学 生有相对严格的计算能力、演绎推理能力数据处理能力等方面的要求,而英国把 “使用和应用数学”贯穿于整个中小学课程可见其对数学应用能力的高标准要 求,同时也强调了“问题解决 、“交流 和“推理”能力的重要性。而英国更加 全面的将信息技术融入中学教学,对学生的各种信息技术软件操作和实践能力明 确的提出了要求。同时,英国课程对于关注学生个性差异的重视程度也是其一大 特点。这与我国提倡的“使不同的学生在数学上得到不同的发展 和“学生全面 而有个性的发展类似,且更具体,更具有可操作性。 日本数学课程的目标就是提高“生存能力 ,为了获得这种生存能力,日本 课程着力于培养学生全面的学习意识和品质,其中也包括独立思考、观察事物、 逻辑思考、发现问题、交流合作等一系列的能力。这些能力也是我国新课程改革 中倡导的。而重视学生学习的多样化;重视提高学生对数学学习的兴趣和关心; 重视通过数学活动培养学生的创造性,是日本高中数学课程自身的特色。 大多数国家似乎开始淡化“数学能力”的提法,并不仅仅以片面的“数学能 力为中心,而强调数学对于发展人的一般能力的价值。如美国数学课程目标中 并未提到“能力 一词,而是以“信心”、“数学推理”等词取而代之。此外各国 课程改革中出现的“创造能力”、“构思、探究、推理能力 、“使用和应用数学的 能力、“问题解决 、“交流和“推理 能力、“发现问题、自学、独立思考、 判断、行动的能力”等多种能力展现了能力的多样性与复杂性,体现了更广泛意 义上的数学能力。 孙晓天主编数学课程发展的国际视野【m 1 北京:高等教育出版社,2 0 0 3 2 3 9 - 2 5 0 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古大学数学试卷
- 奶粉品尝活动方案策划(3篇)
- 米字支撑施工方案(3篇)
- 鹤壁路面开槽施工方案(3篇)
- 感恩业主品牌活动策划方案(3篇)
- 挖碴装车施工方案(3篇)
- 药械知识考试题库及答案
- 北京市门头沟区2023-2024学年八年级下学期期中考试道德与法制考题及答案
- 新材料作文题目及答案
- 写好友作文题目及答案
- 2025年电抗器行业当前市场规模及未来五到十年发展趋势报告
- 新班主任自我介绍课件
- 2025年副高卫生职称-公共卫生类-妇女保健(副高)代码:093历年参考题库含答案解析(5卷)
- 2025广西中考英语真题(原卷版)
- 基孔肯雅热防控技术指南2025版培训课件
- 海底捞-A级门店管理制度
- 《陶行知教育名篇》读书笔记(课堂PPT)
- 员工创新奖励办法
- 毛衫各部位基本尺寸测量表示法中英文对照适用毛织厂
- 金沙县光热水气候条件分析.
- TI84 PLUS计算器培训教材
评论
0/150
提交评论