细胞生物学 问答题.doc_第1页
细胞生物学 问答题.doc_第2页
细胞生物学 问答题.doc_第3页
细胞生物学 问答题.doc_第4页
细胞生物学 问答题.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章 物质跨膜运输 1、试论述Na+-K+泵的结构及作用机理。答案要点:1、结构:由两个亚单位构成:一个大的多次跨膜的催化亚单位(亚基)和一个小的单次跨膜具组织特异性的糖蛋白(亚基)。前者对Na+和ATP的结合位点在细胞质面,对K+的结合位点在膜的外表面。2、机制:在细胞内侧,亚基与Na+相结合促进ATP水解,亚基上的一个天门冬氨酸残基磷酸化引起亚基的构象发生变化,将Na+泵出细胞外,同时将细胞外的K+与亚基的另一个位点结合,使其去磷酸化,亚基构象再度发生变化将K+泵进细胞,完成整个循环。Na+依赖的磷酸化和K+依赖的去磷酸化引起构象变化有序交替发生。每个循环消耗一个ATP分子,泵出3个Na+和泵进2个K+。1、细胞质基质中Ca2+浓度低的原因是什么?答案要点:细胞质基质中Ca2+浓度通常不到10-7mol/L,原因主要有以下几点:在正常情况下,细胞膜对Ca2+是高度不通透的;在质膜和内质网膜上有Ca2+泵,能将Ca2+从基质中泵出细胞外或泵进内质网腔中;某些细胞的质膜有Na+Ca2+交换泵,能将Na+输入到细胞内,而将Ca2+从基质中泵出;某些细胞的线粒体膜也能将钙离子从基质中转运到线粒体基质。3、比较主动运输与被动运输的异同。答案要点:运输方向不同:主动运输逆浓度梯度或电化学梯度,被动运输:顺浓度梯度或电化学梯度;是否需要载体的参与:主动运输需要载体参与,被动运输方式中,简单扩散不需要载体参与,而协助扩散需要载体的参与;是否需要细胞直接提供能量:主动运输需要消耗能量,而被动运输不需要消耗能量;被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生命的活力。第六章 32.为什么说线粒体和叶绿体是半自主性细胞器?线粒体和叶绿体中有DNA和RNA、核糖体、氨基酸活化酶等。这两种细胞器均有自我繁殖所必需的基本组分,具有独立进行转录和转译的功能。线粒体和叶绿体的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成的。细胞核与发育成熟的线粒体和叶绿体之间存在着密切的、精确的、严格调控的生物学机制。在二者协同作用的关系中,细胞核的功能更重要,一方面它提供了绝大部分遗传信息;另一方面它具有关键的控制功能。也就是说,线粒体和叶绿体的自主程度是有限的,而对核遗传系统有很大的依赖性。因此,线粒体和叶绿体的生长和增殖是受核基因组及其自身的基因组两套遗传系统的控制,所以称为半自主性细胞器。1. 内共生起源学说内共生起源学说:认为线粒体和叶绿体分别起源于原始真核cell内共生的细菌和蓝藻。线粒体来源于细菌,即细菌被真核生物吞噬后,在长期共生过程中,通过演变,形成了线粒体。叶绿体来源于蓝藻,被原始真核cell摄入胞内,在共生关系中,形成了叶绿体。主要论据:线粒体和叶绿体的基因组在大小、形态和结构方面与细菌的相似。线粒体核叶绿体有自己完整的蛋白质合成系统,能独立合成蛋白质。线粒体和叶绿体的两层被膜有不同的进化来源,外膜与内膜的结构和成分差异很大。线粒体和叶绿体能以分裂的方式进行繁殖,这与细菌的繁殖方式类似。线粒体和叶绿体能在异源细胞内长期生存。线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌。发现介于包内共生蓝藻与叶绿体之间的结构-蓝小体,其特征在很多方面可作为原始蓝藻向叶绿体演化的佐证。不足之处:a.从进化角度:如此解释在代谢上明显占优势的共生体反而将大量的遗传信息,转移到宿主cell中,不能解释细胞核是如何进化来的,即原核cell如何演化为真核cell。b.线粒体和叶绿体的基因组中存在内含子,而真细菌原核生物基因组中不含有内含子,不能解释其内含子从何而来。第七章 蛋白质分选溶酶体酶蛋白的M6P标记 研究发现,溶酶体的酶上都有一个特殊的标记6-磷酸甘露糖(mannose 6-phosphate, M6P)。这一标记是溶酶体酶合成后在粗面内质网和高尔基体通过糖基化和磷酸化添加上去的。 糖基化溶酶体酶蛋白在膜旁核糖体上合成,进入内质网后进行N-连接糖基化, 经加工后形成带有8个甘露糖残基和2个N-乙酰葡萄糖胺残基的糖蛋白转运到高尔基体。信号斑(signal patch) 信号斑是溶酶体酶蛋白多肽形成的一个特殊的三维结构, 它是由三段信号序列构成的, 可被磷酸转移酶特异性识别12、六磷酸甘露醇-M6P分选机制。 答:溶酶体酶在rER(粗面内质网)上合成,经N-连接糖基化修饰,转至高尔基体,在高尔基体顺面膜囊中寡糖链上的甘露糖残基被磷酸化形成M6P。在高尔基体的反面膜囊和TGN膜上存在M6P的受体,溶酶体酶被分选,出芽方式进入溶酶体来&源|于:学.慧教|育网*XuHuiedu.ComM6P分选途径的特点:M6P作为分选信号; 包埋在高尔基体中的受体能够被网格蛋白包装成分泌小泡; 出芽形成的溶酶体酶的运输小泡只同酸性的次级内体融合; 通过次级内体的分选作用使受体再循环。2. 简述胞饮作用和吞噬作用的主要区别。细胞类型不同:胞饮作用见于几乎所用真核细胞;吞噬作用对于原生动物是一种获取营养的方式,对于多细胞动物这种方式仅见于特殊的细胞(如巨噬细胞、嗜中性和树突细胞)。摄入物:胞饮作用摄入溶液,吞噬作用摄入大的颗粒性物质。胞吞泡的大小不同,胞饮泡直径一般小于150 nm,而吞噬泡直径往往大于250 nm。摄入的过程:胞饮作用是一个连续发生的组成型过程,无需信号刺激;吞噬作用是一个信号触发过程。胞吞泡形成机制:胞饮作用需要网格蛋白形成包被、接合素蛋白连接;吞噬作用需要微丝及其结合蛋白的参与,如果用降解微丝的药物(细胞松弛素B)处理细胞,则可阻断吞噬泡的形成,但胞饮作用仍继续进行。3. 信号肽假说的主要内容。分泌蛋白在N端含有一信号序列,称信号肽,由它指导在细胞质基质开始合成的多肽和核糖体转移到ER膜;多肽边合成边通过ER膜上的水通道进入ER腔,在蛋白合成结束前信号肽被切除。指导分泌性蛋白到糙面内质网上合成的决定因素是N端的信号肽,信号识别颗粒(SRP)和内质网膜上的信号识别颗粒受体(又称停泊蛋白DP)等因子协助完成这一过程。5.蛋白质合成时合成部位合成部位:绝大多数在细胞质中,随后在细胞质基质游离核糖体或转至糙面内质网膜结合核糖体上继续合成。1、何为蛋白质分选?细胞内蛋白质分选的基本途径、分选类型是怎样的?答案要点:蛋白质的分选:细胞中绝大多数蛋白质均在细胞质基质中的核糖体上开始合成,随后或在细胞质基质中或转至糙面内质网上继续合成,然后,通过不同途径转运到细胞的特定部位并装配成结构与功能的复合体,参与细胞的生命活动的过程。又称定向转运。细胞中蛋白质都是在核糖体上合成的,并都是起始于细胞质基质中。基本途径:一条是在细胞质基质中完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体、细胞核及细胞质基质的特定部位,有些还可转运至内质网中;另一条途径是蛋白质合成起始后转移至糙面内质网,新生肽边合成边转入糙面内质网腔中,随后经高尔基体转运至溶酶体、细胞膜或分泌到细胞外,内质网与高尔基体本身的蛋白成分的分选也是通过这一途径完成的。蛋白质分选的四种基本类型:1、蛋白质的跨膜转运:主要指在细胞质基质合成的蛋白质转运至内质网、线粒体、叶绿体和过氧化物酶体等细胞器。2、膜泡运输:蛋白质通过不同类型的转运小泡从其糙面内质网合成部位转运至高尔基体进而分选运至细胞不同的部位。3、选择性的门控转运:指在细胞质基质中合成的蛋白质通过核孔复合体选择性地完成核输入或从细胞核返回细胞质。4、细胞质基质中的蛋白质的转运。第八章 细胞信号转导4、NO的产生及其细胞信使作用?答案要点:NO是可溶性的气体,NO的产生与血管内皮细胞和神经细胞相关,血管内皮细胞接受乙酰胆碱,引起细胞内Ca2+浓度升高,激活一氧化氮合成酶,该酶以精氨酸为底物,以NADPH为电子供体,生成NO和胍氨酸。细胞释放NO,通过扩散快速透过细胞膜进入平滑肌细胞内,与胞质鸟苷酸环化酶活性中心的Fe2+结合,改变酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度,引起血管平滑肌的舒张,血管扩张、血流通畅。NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关。5、钙离子的主要作用途径有哪几种?答案要点:主要有:通过钙结合蛋白完成作用,如肌钙蛋白C、钙调素;通过钙调素活化腺苷酸环化酶及PDE调节cAMP水平;作为双信使系统的传递信号;参与其它离子的调节。6、G蛋白的类型有哪些?答案要点:G蛋白有两种类型一种是刺激型调节蛋白(Gs),另一种是抑制型调节蛋白(Gi)。二者结构和功能很相似,均由、和三个亚基组成,分子质量均为80100000D,它们的和亚基大小很相似,其亚基也都有两个结合位点:一是结合GTP或基其类似物的位点,具有GTP酶活性,能够水解GTP;另一个是含有负价键的修饰位点,可被细胞毒素ADP核糖基化。二者的不同之处在于Gs的S亚基能被霍乱毒素ADP核糖基化,而Gi的i亚基能被百日咳毒素ADP核糖基化。Gs和Gi都调节其余相应受体的亲合性以及作用于腺苷酸环化酶,产生cAMP。7、简要说明由G蛋白偶联的受体介导的信号的特点。答案要点:G蛋白偶联的受体是细胞质膜上最多,也是最重要的倍转导系统,具有两个重要特点:信号转导系统由三部分构成:G蛋白偶联的受体,是细胞表面由单条多肽链经7次跨膜形成的受体;G蛋白能与GTP结合被活化,可进一步激活其效应底物;效应物:通常是腺苷酸环化酶,被激活后可提高细胞内环腺苷酸(cAMP)的浓度,可激活cAMP依赖的蛋白激酶,引发一系列生物学效应。产生第二信使。配体受体复合物结合后,通过与G蛋白的偶联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。根据产生的第二信使的不同,又可分为cAMP信号通路和磷酯酰肌醇信号通路。cAMP信号通路的主要效应是激活靶酶和开启基因表达,这是通过蛋白激酶完成的。该信号途径涉及的反应链可表示为:激素G蛋白偶联受体G蛋白腺苷酸环化化酶cAMP cAMP依赖的蛋白激酶A基因调控蛋白基因转录。 磷酯酰肌醇信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别启动两个信号传递途径即IP3Ca2+和DGPKC途径,实现细胞对外界信号的应答,因此,把这一信号系统又称为“双信使系统”。8、磷酯酰肌醇信号通路的传导途径。(综4)答案要点:外界信号分子识别并与膜上的与G蛋白偶联的受体结合活化G蛋白激活磷脂酶C催化存在于细胞膜上的PIP2水解IP3和DG两个第二信使IP3可引起胞内Ca2+浓度升高,进而通过钙结合蛋白的作用引起细胞对胞外信号的应答;DG通过激活PKC,使胞内pH值升高,引起对胞外信号的应答。2、cAMP信号系统的组成及其信号途径?答案要点:1、组成:主要包括:激活性激素受体Rs和激活型G蛋白复合物Gs;抑制性激素受体Ri和抑制型G蛋白复合物Gi;腺苷酸环化酶;PKA:蛋白激酶A;环腺苷酸磷酸二酯酶。2、信号途径主要有两种调节模型:Gs调节模型,当激素信号与Rs结合后,导致Rs构象改变,暴露出与Gs结合的位点,使激素-受体复合物与Gs结合,Gs的构象发生改变从而结合GTP而活化,导致腺苷酸环化酶活化,将ATP转化为cAMP,而GTP水解导致G蛋白构象恢复,终止了腺苷酸环化酶的作用。该信号途径为:激素识别并与G蛋白偶联受体结合激活G蛋白活化腺苷酸环化酶胞内的cAMP浓度升高激活PKA基因调控蛋白基因转录。Gi调节模型,Gi对腺苷酸环化酶的抑制作用通过两个途径:一是通过亚基与腺苷酸环化酶结合,直接抑制酶的活性;一是通过和亚基复合物与游离的Gs的亚基结合,阻断Gs的亚基对腺苷酸酶的活化作用。3、cAMP信号系统的组成及其激活型的信号途径?(11%)答:cAMP信号系统由质膜上的5种成分组成:激活型激素受体(Rs);抑制型激素受体(Ri);与GDP结合的活化型调节蛋白(Gs);与GDP结合的抑制型调节蛋白(Gi);催化成分,即腺苷酸环化酶(C)。 当激素配体与激活型激素受体结合形成复合物时,导致受体胞内构象改变,暴露出与Gs结合的位点,膜的流动性使激素-受体复合物与Gs结合,Gs的亚基构象改变,从而排斥GDP,结合GTP而活化,解离出亚基,并暴露出亚基与腺苷酸环化酶的结合位点。结合GTP的亚基与腺苷酸环化酶结合,使之活化,从而催化ATP生成cAMP,使胞内cAMP浓度急剧增加。cAMP特异地活化cAMP依赖的蛋白激酶A而表现出不同的效应,蛋白激酶A由两个催化亚基和两个调节亚基组成,cAMP与调节亚基结合,改变调节亚基构象,使调节亚基和催化亚基解离,释放出催化亚基。活化的蛋白激酶A催化亚基可使细胞内下游靶蛋白的丝氨酸或苏氨酸残基磷酸化,改变这些蛋白的活性,从而影响细胞代谢和细胞行为,影响细胞的基因表达。该信号途径涉及的反应链可表示为:激素G蛋白偶联受体G蛋白腺苷酸环化酶cAMPcAMP依赖的蛋白激酶A基因调控蛋白基因转录3、试论述蛋白磷酸化在信号传递中的作用。答案要点:蛋白磷酸化是指由蛋白激酶催化的把ATP或GTP的磷酸基团转移到底物蛋白质氨基酸残基上的过程,其逆转过程是由蛋白磷酸酶催化的,称为蛋白质去磷酸化。蛋白磷酸化通常有两种方式:一种是在蛋白激酶催化下直接连接上磷酸基团,另一种是被诱导与GTP结合,这两种方式都使得信号蛋白结合上一个或多个磷酸基团,被磷酸化的蛋白有了活性后,通常反过来引起磷酸通路中的下游蛋白磷酸化,当信号消失后,信号蛋白就会去磷酸化。磷酸化通路通常是由两种主要的蛋白激酶介导的:一种是丝氨酸/苏氨酸蛋白激酶,另一种是酪氨酸蛋白激酶。蛋白激酶和蛋白磷酸酶通过将一些酶类或蛋白磷酸化与去磷酸化,控制着它们的活性,使细胞对外界信号作出相应的反应。通过蛋白磷酸化,调节蛋白的活性,通过蛋白磷酸化,逐级放大信号,引起细胞反应。第十二章 细胞增殖与调控1.简述MPF活化过程。周期蛋白积累;结合cyclin3的CDK1被weel将Thr14和Tyr15磷酸化而不具有活性,使CDK/cyclin不断积累;M期,weel活性下降,CDC25使CDK去磷酸化,去除了CDK活化的障碍;在CDK激酶(CAK)的作用下完成Thr161的磷酸化完成CDK的激活,因而使MPF活化。8.什么是成熟促进因子MPF,有何作用?MPF即卵细胞促成熟因子,或细胞促分裂因子,或M期促进因子。MPF的研究是从上世纪70年代就开始的。MPF是由两个亚单位组成的二聚体。其中一个是催化亚基,是细胞周期蛋白依赖性激酶CDK1(P34cdc2)。另一个亚单位是细胞周期蛋白B。CDK1(P34cdc2)具激酶活性,含量恒定,可催化不同底物磷酸化。需与CyclinB结合才能被激活。CyclinB是MPF的调节亚基,含量呈周期性变化,一般在G1晚期开始合成,通过S期其含量不断增加,到达G2期,其含量达到最大值。CyclinB具有调节P34cdc2的活性和选择激酶底物的作用。激活的CDK1可将靶蛋白磷酸化而产生相应的生理效应,如组蛋白H1、核纤层蛋白、微管蛋白等,1组蛋白的磷酸化可参于有丝分裂的启动和染色质的凝集。核纤层蛋白的磷酸化可引起核纤层的解体,核膜的破裂。这些效应进而促进细胞通过G2/M期及完成M期过程。5.什么是细胞周期的检查点(checkpoint),有何意义?答:在细胞周期的各个时相转换过程,均有一个重要的调空点,称为检查点(checkpoint),如G1期向期转换的检查点,被称为限制点(R点)。这些检查点监视和调控周期时相正常转换能严格有序的进行,在正常的细胞周期行进或细胞分裂时并无重要表现,但如果发生DNA损伤,复制错误,细胞在G1期R点休止,不能进入S期,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论