




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料范本2019秋 金版学案 数学选修1-2(人教版)练习:第二章2.2-2.2.1第1课时综合法 含解析编 辑:_时 间:_第二章 推理与证明2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A级基础巩固一、选择题1若“a,b,c是不全相等的正数”,给出下列判断:(ab)2(bc)2(ca)20;ab与ab及ab中,至少有一个成立;ac,bc,ab不能同时成立其中正确判断的个数为()A0B1C2 D3解析:因“a,b,c是不全相等的正数”,则“ac,bc,ab”可能同时成立所以不正确,正确答案:C2已知函数f(x)lg ,若f(a)b,则f(a)等于()AbBb C.D解析:函数f(x)的定义域为x|1x0 Ba2b22(ab1)Ca23ab2b2 D.0,故函数f(x)在区间(0,1)上是增函数”,应用了_的证明方法解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法答案:综合法7角A,B为ABC内角,AB是sin Asin B的_条件(填“充分”“必要”“充要”或“即不充分又不必要”)解析:在ABC中,ABab由正弦定理,从而sin Asin B.因此ABabsin Asin B,为充要条件答案:充要8已知pa(a2),q2a24a2(a2),则p,q的大小关系为_解析:因为pa(a2)2224,又a24a22(a2)22),所以q2a24a2q三、解答题9已知a,b是正数,且ab1,求证:4.证明:法一因为a,b是正数,且ab1,所以ab2,所以,所以4.当且仅当ab时,取“”号法二因为a,b是正数,所以ab20,20,所以(ab)4.又ab1,所以4.当且仅当ab时,取“”号法三1122 4.当且仅当ab时,取“”号10设函数f(x)ax2bxc(a0),若函数yf(x1)与yf(x)的图象关于y轴对称,求证:函数yf为偶函数证明:函数yf(x)与yf(x1)的图象关于y轴对称f(x1)f(x)则yf(x)的图象关于x对称,ab.则f(x)ax2axcacfax2c为偶函数B级能力提升1不相等的三个数a,b,c成等差数列,并且x是a,b的等比中项,y是b,c的等比中项,则x2,b2,y2三数()A成等比数列,而非等差数列B成等差数列,而非等比数列C既成等差数列又成等比数列D既非等差数列又非等比数列解析:由题设得由得a,由得c,代入得2b,所以x2y22b2,故x2,b2,y2成等差数列答案:B2若不等式(1)na2对任意正整数n恒成立,则实数a的取值范围是_解析:当n为偶数时,则a2恒成立,所以a2.当n为奇数时,则a2恒成立又22,因此a2.由知,2a.答案:3(20xx山东卷)在如图所示的几何体中,D是AC的中点,EFDB.(1)已知ABBC,AEEC,求证:ACFB;(2)已知G,H分别是EC和FB的中点求证:GH平面ABC.证明:(1)因为EFDB,所以EF与DB确定平面BDEF.如图,连接DE.因为AEEC,D为AC的中点,所以DEAC.同理可得BDAC.又BDDED,所以AC平面BDEF.因为FB平面BDEF,所以ACFB.(2)设FC的中点为I,如图,连接GI,HI,在CEF中,因为G、I分别是CE、CF的中点,所以GIEF.又EFDB,所以GI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年SMT贴片加工行业研究报告及未来行业发展趋势预测
- 2025年妇科微波消融行业研究报告及未来行业发展趋势预测
- 2025年生死狙击试题及答案
- 美容院肩颈按摩培训课件
- 跨国物流服务合同:国际跨境电商快递合作协议
- 2025年智慧家居BIM模型设计与施工指导服务合同
- 2025年精装修别墅装修工程合同范本
- 2025年文化节庆典主持人签约及活动细节执行管理合同
- 2025年医用材料绿色包装研发及环保性能检测项目合同
- 2025年校园食堂后勤保障服务外包合同
- 2025-2026学年人教版(2024)初中生物八年级上册教学计划及进度表
- 消除母婴三病传播培训课件
- ASTM-D3359-(附著力测试标准)-中文版
- 水污染控制教程第十二章+活性污泥法
- 反应釜泄漏事故应急处置卡
- GA/T 1556-2019道路交通执法人体血液采集技术规范
- GA 1800.5-2021电力系统治安反恐防范要求第5部分:太阳能发电企业
- 《大众传播学研究方法导论(第二版)》课件第一章 导论
- 2023年方正县林业系统事业单位招聘笔试题库及答案解析
- 《基于EXCEL动态模型的定量与定性分析【3000字论文】》
- 中级会计《经济法》最新精编必刷550题(后附答案解析)
评论
0/150
提交评论