




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2导数的几何意义,平均变化率,函数y=f(x)的定义域为D,x1.x2D,f(x)从x1到x2平均变化率为:,割线的斜率,以平均速度代替瞬时速度,然后通过取极限,,从瞬时速度的近似值过渡到瞬时速度的精确值.,我们把物体在某一时刻的速度称为瞬时速度.,从函数y=f(x)在x=x0处的瞬时变化率是:,以平均速度代替瞬时速度,然后通过取极限,,从瞬时速度的近似值过渡到瞬时速度的精确值.,我们把物体在某一时刻的速度称为瞬时速度.,从函数y=f(x)在x=x0处的瞬时变化率是:,由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:,注意:这里的增量不是一般意义上的增量,它可正也可负.自变量的增量x的形式是多样的,但不论x选择哪种形式,y也必须选择与之相对应的形式.,回顾,P,Q,切线,T,导数的几何意义:,我们发现,当点Q沿着曲线无限接近点P即x0时,割线PQ如果有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.,设切线的倾斜角为,那么当x0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.,即:,这个概念:提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在x=x0处的导数.,要注意,曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.,因此,切线方程为y-2=2(x-1),即y=2x.,求曲线在某点处的切线方程的基本步骤:求出P点的坐标;利用切线斜率的定义求出切线的斜率;利用点斜式求切线方程.,练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.,即点P处的切线的斜率等于4.,(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.,在不致发生混淆时,导函数也简称导数,函数导函数,由函数f(x)在x=x0处求导数的过程可以看到,当时,f(x0)是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:,如何求函数y=f(x)的导数?,看一个例子:,下面把前面知识小结:,a.导数是从众多实际问题中抽象出来的具有相同的数学表达式的一个重要概念,要从它的几何意义和物理意义了认识这一概念的实质,学会用事物在全过程中的发展变化规律来确定它在某一时刻的状态.,b.要切实掌握求导数的三个步骤:(1)求函数的增量;(2)求平均变化率;(3)取极限,得导数.,(3)函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即.这也是求函数在点x0处的导数的方法之一.,小结:,(2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数.,(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.,c.弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系.,(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0)的切线的斜率.,(2)根据直线方程的点斜式写出切线方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空器材维修工程师职业技能认证试题及答案
- 2025年航空企业机械师安全生产知识考试试题及答案
- 2025年主厂房检修班技能培训试卷及答案
- 3.1 DNA是主要遗传物质教学设计-2023-2024学年高一下学期生物人教版必修二
- 高速公路沥青施工合同(3篇)
- 安徽导游证试题及答案
- 爱尔三基考试题库及答案
- oppo会计笔试题目及答案
- 互联网房地产投资合作框架协议范本
- 2025国税公务员面试题及答案
- 2025年事业单位笔试-贵州-贵州药事管理(医疗招聘)历年参考题库含答案解析
- 战术基础动作低姿匍匐
- 胃肠镜报告的解读
- Unit2课时1ListeningSpeaking(课件)英语仁爱科普版2024八年级上册
- 14.2 三角形全等的判定(第2课时)
- 机房维护保密协议合同模板
- 2025医师处方权试题及答案(全文)
- 2025中小学诗词大会题库题库(含答案)
- 小学教师法律讲座
- 2025至2030中国高速公路行业市场深度调研及前景趋势与投融资报告
- 中职生自我介绍教学课件
评论
0/150
提交评论