




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
无人机控制程序设计中科宇图天下科技有限公司无人机控制程序设计文档状态:文档编号:YTTX-QM-01-无人机硬件设计规范 草稿 已发布 修改中编 撰:汪喜斌编撰日期:2012-9-12保密级别:内部资料文档版本:V1.0.0 40文档控制:文件版本历史日期版本说明作者2012-8-120.5.0初稿梁辉2012-9-101.0.0经总裁批准,正式发布汪喜斌保密等级定义 公开资料 内部资料 保密资料 机密资料1无人机概述 无人机即无人驾驶飞机,也称为遥控驾驶飞行器,是机上没有驾驶员,靠自身程序控制装置操纵,自动飞行或者由人在地面或母机上进行遥控的无人驾驶飞行器,在它上面装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统实现远距离控制飞行。无人机大体上由无人机载体、地面站设备(无线电控制、任务控制、发射回收等起降装置)以及有效负荷三部分组成。2 无人机的数学模型 本章首先推导了无人机的六自由度非线性数学模型,然后利用小扰动理论将非线性方程组线性化,最后介绍了平衡点的配平方法,并在飞行包线内典型状态点处进行了配平。2.1常用坐标系简介 为了确切地描述飞机的运动状态必须选用适当的坐标系,要想确定飞机在地球上位置就必须采用地面坐标系;要想方便地描述飞机的转动与移动,必须采用机体坐标系或气流坐标系(速度坐标系)。本文只介绍这三种坐标系。2.1.1地面坐标系 地面坐标系是与地球固连的坐标系。原点A固定在地面的某点,铅垂轴向上为正,纵轴与横轴为水平面内互相垂直的两轴。一般取纵轴为飞机的应飞航线。用表示航程、表示侧向偏离(向右为正)、表示飞行高度,见图2-1。 图2-1 地面坐标系2.1.2机体坐标系 机体坐标系是与机固连的坐标系原点在机的重心上,纵轴在飞机对称平面内,平行于翼弦,指向机头为正;立轴也在飞机对称平面内并垂直于,指向座舱盖为正;横轴与平面垂直,指向右翼为正,见图2-2。 图2-2 机体坐标系2.1.3速度坐标系(气流坐标系) 速度坐标系原点也在飞机的重心上,但轴与飞机速度向量V重合;也在对称平面内并垂直于,指向座舱盖为正;垂直于平面,指向右翼为正,见图2-3。 图2-3 速度坐标系2.2飞机的常用运动参数飞机的运动参数就是完整地描述飞机在空中飞行所需要的变量,只要这些参数确定了,飞机的运动也就唯一地确定了。因此,飞机的运动参数也是飞机控制系统中的被控量。2.2.1 姿态角姿态角主要描述了机体坐标系与地坐标系的差异。包括以下三个欧拉角:1)偏航角:轴在地平面上的投影与地轴之间的夹角,以机头左偏航正;2)俯仰角:机体轴 与地平面的夹角,以机头抬头时为正;3)滚转角:机体轴与地轴之间的夹角,以飞机右倾时为正。2.2.2 向量与机体坐标系的关系1)迎角(角)速度向量V在飞机对称平面内的投影,与轴之的夹角,以V的投影在轴之下为正;2)侧滑角:速度向量V与飞机对称平面之间的夹角,以V处于对称平面之右正2.2.3 飞机速度向量与机体坐标系的关系1)航迹倾斜角:速度坐标系中OXq轴与地平面的夹角,以速度向上为正;2)航迹偏转角:轴在地平面内的投影与的夹角,以为投影,左偏为正。2.2.4 控制量与被控量通常利用副翼、方向舵、升降舵及油门杆来进行对飞机的控制。其中副翼、方向舵、升降舵及油门杆的偏转角分别用来表示,其方向规定如下: 副翼左上右下为正;:升降舵下偏为正;:方向舵右偏为正;:油门杆向前推为正。作为被控对象的飞机,往往把三个姿态角当作主要的被控量,在飞行轨迹的控制系统中H、V也作为被控量。因此飞机的输入输出的关系可表示如图: 2-4 无人机的输入输出的关系2.3 前苏联体制下无人机的非线性运动方程组2.3.1 无人机六自由度运动方程式的建立 基于飞机运动刚体性的假设,我们就可以推导出飞机的一般数学模型为一组提阶的非线性微分方程组(推导过程将在附录A中给出),这组方程同样适用于我们所研究的IM定翼无人机。根据牛顿定律,其运动方程应由两部分组成:一部分是以牛顿第二定律(动力定律)为基础的动力学方程组(此时将无人机看作刚体),由此解得无人机相对于机体坐标系的角度向量和角速度向量;另一部分则是通过坐标变换关系得出的运动学方程组(此时将无人机看作质点),确定出无人机相对于地面坐标系的位置向量和速度向璧。无人机在前苏联体制一F的12阶非线性微分方程组如下所示: 式(2I)一(2.3)中的分别表示作用在无人机上的合力在各机体于是 这里还需要说明一点的是,在实际应用中我们往往不把机体轴上的速度分量Y气、气作为状态量,而是把V,a,f作为状态A。根据机体坐标系和速度坐标系之1A的关系,我们可以得到机体坐标系下的速度: 2.3.2 无人机六自由度全面运动方程式的简化处理 采用微扰动法对这些非线性的方程进行线性化。先略去发动机引起的陀螺力矩项。然后假定所有运动参数对某一稳定飞行状态的变化极其微小。 都是微量。它们的二次方及乘积可以略去不记。这些角度的正切与正弦看成与这些角度的弧度数相等,而它们的余弦近似看成上,即有: 因此,十二个一阶微分方程组可以化为: 关于各方程式是互相密切联系着的。由于这些方程式描述的运动是围绕飞机横侧方向(侧移、滚动和偏航)而进行的。 因此 这些方程描述的运动叫侧向运动。 其余的方程式,描述的运动是在通过飞机纵轴的平 面(对称平面)内进行的,叫纵向运动。这样,我们就可以把无人机的运动方程分成纵向运动方程组和侧向运动方程组来讨论,从而给我们研究无人机的运动规律带来了极大的方便。无人机这样一个被控对象之所以能分为两种运动,主要是因为它有一个对称平面ox,Y的缘故。但应该指出的是,虽然略去次要因素并假定微扰动后可以分为两种运动来分析,一旦扰动较大时,两种运动就会有相互影响。一般来讲,在略去发动机引起的陀螺力矩时纵向运动对侧向运动影响较小,而侧向运动对纵向运动的影响较大。尽管如此,我们在设计飞行控制律时总是先将一些次要因素略去不计,把一个复杂对象的运动分豁为两个简单运动,从0利用这种简单运动初步确定控制系统的参数。一旦参数确定之后,我们就可以通过较精确的全通运动的计算或通过实物模拟与试飞来加以考验。如发现问题,再对参数进行必要的修正。2.4 无人机数学模型的配平及线性化无人机六自由度模型的力方程组和力矩方程组中均存在着非线性关系,同时方程组中力和力矩与运动参数密切相关,因此,在一般情况下求取无人机运动方程的解析解是非常困难的,只能借助于计算机求取数值解。然而,在通常情况下较之数值解而言,无人机运动方程的解析解对于分析无人机的构形参数与无人机稳定性和操纵性之间的关系更加方便有效,也更具有普遍意义。除此之外,线性化的无人机运动方程也更适合于以成熟的线性系统控制理论为基础的飞行控制系统的设计。因此,在分析无人机的构形参数与飞行稳定性和操纵性之间关系以及对飞行控制系统设计之前,将无人机运动方程进行线性化处理的方法成为目前在实际工程中广泛应用的重要方法之一。2.4.1 无人机平衡点的配平 配平的最终目的是为了给线性化提供一个基准飞行状态,通过调整舵偏度使力和力矩平衡,即使加速度和角加速度为零。首先通过已设计好的飞行包线得到各个状态点的马赫数、高度、质量、力等量,并大致估计当前的飞行状态,进一步对姿态角进行估计得到姿态角初始配平值。由马赫数、高度得到总速,进而由攻角和侧滑角得到气流轴系的速度,也即无风条件下的地速;由马赫数、高度和姿态角还可插值得到各动导数,从而得到气动力和气动力矩,在无动力飞行的情况下即为总的力和矩,再由惯性矩和惯性积即可推得角加速度。然后通过迭代运算配平加速度角加速度为零。并不是所有的配平都要求达到绝对的平衡,除了合力矩为零条件必须满足外,根据不同的飞行状态允许存在加速度。配平的方法有两种,一种是基于simulink模型的配平线性化方法,即采用Matlab平台的simulink controroesign工具箱作为辅助工具进行该无人机自然飞机模型的配平线性化工作;另一种方法是通过计算大小导数,编写配平函数和获取线性化矩阵。本文采用基于simulink非线性模型进行配平。根据任务需求和飞行阶段的不同,在开始配平之前要有选择性的进行输入输出约束和状态定义。进行配平线性化的主要步骤如下: (l)样例机原始数据的准备,主要包括以下基本参数:A.整机及各部件(包括主机翼,平尾,垂尾及各部件的动力学参数)相关的几何尺寸、特征长度和特征面积等;B.整机,例如质量、转动惯量等C.各部件气动力和力矩系数,例如升力曲线斜率、型阻系数等;D.标准大气参数,例如大气密度、重力加速度等。 (2)给定需要配平的无人机运动状态。例如,飞行速度,旋翼转速,高度等。 (3)建立样例机平衡方程组,确定方程组的求解方法,给出预估的配平初始值和计算精度要求等。 (4)以预估的初始值和机体运动参数为起点,计算在体轴系下的合外力和合外力矩,并代入平衡方程组中,进行迭代求解得到一组新的配平值。根据精度要求判断是否收敛,如果收敛,则配平计算结束;否则以新的配平值为起点,重复上述过程,直到收敛为止。 (5)在以设置好的输入输出和配平点下线性化模型。 (6)保存结果,为线性化控制律设计作准备。2.4.2 无人机运动方程的线性化 前面所介绍的关于无人机的非线性数学模型主要用于计算机仿真和验证飞行控制系统的性能。为了便子分析计算如控制器的初步设计,稳定性、可观测性以及操纵性等研究,则需要对这些方程进行简化处理。通过限制各个变量的数值大小或假设它们同特定的工作状态偏移很小,我们可以对无人机的运动方程进行线性化。随着非线性系统理论的发展,线性化的方法也不断推陈出新,也各有特色,但从实用角度出发,小扰动线性化方法仍可成为是最简单和最有效的。一般 而 言 ,小扰动线性化是相对于某基准工作点进行的,即把系统的运动分解为基准运动和扰动运动。如果扰动运动相对于基准运动而言很小,则称系统的工作为基准工作点附近的小扰动工作方式。对于非线性系统的这种小扰动工作方式,我们可以对其运动方程在工作点附近进行泰勒展开,忽略偏差量的二次及更高次项,再减去基准工作点处的运动方程,即可得到线性化的小扰动增量方程。当我们将无人机的定常直线无侧滑飞行作为基准运动,在小扰动假设下把无人机运动方程线性化之后,再加上本章一开始所提到的几点假设,就可以使线性化运动方程分离为纵向和横侧向两组彼此独立的常系数线性方程。因事实上,即使基准运动是非定常的,只要运动参数变化不是很剧烈,在一段时间内我们仍可近似认为这些系数是常数,这种处理方法称之为系数冻结法。 无人机运动方程的状态空间表达式 根据前面所介绍到的小扰动线性化方法,以无人机的恒速、定高、直线和无侧滑的飞行作为基准运动,即可得到无人机纵向与横侧向运动的线性化方程式,经适当整理后我们就可以得到其运动方程的状态空间表达式。己知状态方程的表达式为,则对于纵向运动而言: 对于横侧向向运动而言: 于是,无人机纵向运动与横侧向运动的状态方程就分别如式(2.32)和式(2.33)所示: 上面所得到的无人机线性化状态方程可以作为我们进行控制器设计和仿真的基础,本文所做的一些仿真研究都是在此基础上建立起来的。针对上述的状态方程,我们还有必要补充以下几点:(a)状态方程前的各个系数均有明确的量纲,其具体计算公式都比较繁琐,可参见文 献Ii 或文献31,故不在本文中列出。(b)由子我们所考虑的基准运动是对称运动,所以横侧向变量的偏差量就等于该变量 本身 ,因此可以不必使用前置符号Aa (c)线性化状态方程必须满足一定的理想条件。一般来说,这些线性化方程只适用于 对称直线飞行的理想条件附近。对于大角度机动飞行而言则必须沿用完整的非线 性方程,并且不能忽略纵向通道与横侧向通道之f-Hl的祸合作用。2.5 本章小结 在本章中 我们重点讨论了前苏联坐标体制下无人机空间运动的表示以及无人机十二阶非线性微分方程组的建立,并利用小扰动线性化方法对其进行了线性化处理,从而得到了无人机纵向与横侧向运动方程式的状态空间表达式,为后面的飞行控制系统的设计与仿真奠定了基础,最后还给出了英美体制下无人机T-T体系的十二阶非线性微分方程组。这里,我们要指出的是,不管是前苏联体制还是英美体制,都只是对相同模型的不同表述方式,其具体差异主要体现在所定义坐标系以及各参数符号的不同,这两种体制间的相互转换可参见文献171。另外,在附录B中我们还详细给出了这两种坐标体制下的参数对照表。 3控制系统理论基础 3.1引言 PID 控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性强以及可靠性高等特点,在实际的控制系统中得到了较为广泛的应用。但是随着工业生产的发展,控制系统变得越来越复杂、不确定因素也日益增多,同时对相应的控制指标提出了更高的要求,采用常规的PID控制技术已不能达到理想的控制效果。PID 控制中一个关键的问题便是PID参数的整定。但是在实际的应用中,许多被控对象机理复杂,具有高度非线性、时变不确定性和纯滞后等特点。在噪声、负载扰动等因素的影响下,被控对象的参数甚至模型结构均会随时间和周围环境的变化而变化。这就要求在我们在PID控制中,不仅要使其PID参数的整定不依赖于对象的数学模型,而且要能够实现在线调整,以满足实时控制的要求。智能控制 (IntelligentC ontrol)是一门新兴的理论和技术,它是一门交叉学科,是自动控制、运筹学和人工智能的结合物。智能控制这一概念最早出现于六十年代,美籍华裔科学家傅京孙教授较早对此进行了研究,此后人们开始从不同的角度模仿人的智能去解决常规控制方法所无法解决的问题,智能控制得到了较为迅速的发展。智能控制所研究的内容是很广泛的,通常包括基于知识推理专家控制、基于规则的自学习控制、基于联结机制的神经网络控制、基于模糊逻辑的智能控制和仿人智能控制等。这些智能控制方法与传统的PID控制策略相结合,从而派生出了各种新型的智能PID控制器,形成了庞大的PID家族,其中很多算法都大大改进了常规PID控制器的性能。与常规PID控制相比,智能PID控制通常具有不依赖系统精确数学模型的特点,而且对系统的参数变化也具有较强的鲁棒性。3.2 常规PID控制 常规的PID控制由比例单元(P)、积分单元(1)和微分单元(D)三部分组成。其输入e(t)与输出u(t)的关系为: 式中K。为比例增益,T为积分时间常数,Tt为微分时间常数,U(t)为控制量!e(t)为被控量y(t)和设定值r(1)的偏差,e(t)= r (t)-Y (t).随着计算机技术的飞速发展,数字式PID控制己经逐步取代了传统的模拟PID控制,它可以分为位置式PID和增量式PID两种,其表达形式分别如下所示: 以上两 式中的r均表示采样时间。比例 、积分和微分对系统的性能分别产生不同的影响,其具体作用如下所示: (1) 比例作用 PID 控制器的稳定性、超调量、响应速度等动态指标主要取决于比例系数的大小,由小到大变化时,系统的响应速度加快;系统的超调量由没有到有,由小变大;对于系统的稳定性来说,总体的趋势是由强到弱。为了兼顾系统的稳定性和动态性能,应取合适的比例系数。 (2)积分作用 积分调节与系统的稳态精度密切相关,加入积分能消除系统的稳态误差,提高系统的跟踪精度,但过大的积分作用会造成系统的超调。同时积分的引入会给系统带来相角滞后,从而产生超调甚至,引起积分的饱和作用,不利于系统的响应品质。 (3)微分作用 微分调节 的主要作用是克服大惯性时间常数的影响,引入微分相当子给系统引入一个动态阻尼,增大T,能够减小系统的超调量,但系统的调节时间会因此而变大。在复杂的实际环境中,山于环境噪声的污染,微分往往会放大系统的噪声,使得系统对抗干扰能力减弱。 从上述的分析可以看到,在PID参数的整定过程中,往往会遇到系统的稳定性和系统的稳态、动态性能之间的矛盾,最后只能在三者之间取一个折衷,很难满足高精度、高性能的要求。 3.3 PID控制器参数的常用整定方法目前,PID控制器参数的常用整定方法大体上可以分为两大类:第一类以Ziegler一Niehols方法(简称ZN方法)与Chien一Homes一Reswick方法(简称CHR方法)为代表,这些方法首先给出系统的闭环时域响应(阶跃响应)或频域响应,然后将系统近似成一阶带延时的系统,通过从图中获取需要的数据,再根据所给出的经验公式整定PID控制器的参数;另一类方法则没有经验公式,而是根据各种性能指标及其数学定义,通过纯粹的数学运算来获得PID控制器参数。这些方法主要包括:改进的Ziegle- Nichols方法、预测性PI控制器算法、相角,幅值裕度设定方法、最优PID控制器设计方法和基于灵敏度的设计方法等等。下面介绍几种常用的PID控制器参数整定的方法。3.3.1 zieger-Niehols整定方法该整定方法基于稳定性的分析。它主要根据对象特性或对象在临界振荡时响应曲线的参数确定所需的控制器参数。(1)反应曲线法该方法适用于对象传函可近似为的场合。先输入阶跃信号,测得输出曲线并估计对象参数,然后根据所使用的控制器按表3-1得到控制器的参数。 表3-1反应曲线法PID参数整定表(2)临界比例度法该方法适用于己知对象传函的场合。首先将调节系统中调节器置成比例状态,然后把比例度 (即的倒数)由大逐渐变小,直至出现等幅振荡,此时比例度称临界比例度,相应的振荡周期称临界振荡周期,PID参数整定的经验公式如表3.2所示。采用临界比例度法时,系统需得到临界振荡的条件是系统必须是3阶或3阶以上的。 表3-2 临界比例度法PID参数整定表 3.3.2 衰减曲线整定法 该方法是根据衰减频率特性来整定PID控制器参数的。先将闭环系统中的调节器置于纯比例作用,从大到小逐渐调节比例度,加扰动做调节系统的实验直至出现4:1的衰减振荡,此时的比例度记为,振荡周期记为,其中为到的时间(如图3-1所示),上升时间记为。具体得参数整定规则如表3-3所 图3-1 衰减响应曲线 表3-3衰减曲线法PID参数整定表3.3.3基于相角裕度的整定方法Astrom和Hagglulld提出了一种由幅值与相角裕度设定来设计PID控制器的算法,该算法的基本思想是通过设计PID控制器将系统频域响应中的一个点移动到另一个指定的点处。例如,将其中一个点移动到只有幅值为l且相位为预先指定的值处,从而迫使闭环系统具有期望的相角裕度。假设在对象模j型G(s)和控制器模型Gc(s)上的点可以表示成: 且期望的频域响应为,则可以看出: (3.5) 下面我们只讨论基于相角裕度设定的PID参数整定法。 首先,我们定义,且,其中为期望的相角裕度,这样就可以得到: (3.6)式中为指定的频率点。可以看出,该方程有无穷多组解。为简单起见,我们可以假定有某种线性关系,记作,这样我们就可以得出一族解为:,且的值则可以通过下式得到: 在本文后面的飞行控制律的设计中,我们将采用这种方法对常规PID参数进行整定,并以此作为智能PID控制器参数初始值的依据。4无人机纵向系统控制律的设计与仿真 无人机是通过自动控制系统与遥控遥测系统来共同实现任务控制的,这是它区别于有人驾驶飞机的主要特征。其中控制系统与遥控遥测系统的核心是飞行控制系统和通讯系统。一般来将讲,一个完整的无人机系统的飞控系统有机载体部分和地面部分之分,其间由无线电上下行通道担任机载与地面站的计算机通信。在本文中,如果没有特殊说明,我们所提到的无人机的飞行控制系统均指的是它的机载部分,或者更具体的说主要是针对它的自动驾驶仪部分。4.1无人机飞控系统基本原理概述4.1.1飞控系统的硬件结构从硬件上来看,无人机的飞控系统是由飞控计算机、测定装置(传感器)及伺服装置三部分组成的。飞控计算机是整个无人机机载飞控系统的核心设备,它的主要功能是根据输入的传感器信息、存储的相关状态和数据以及无线电测控终端发过来的上行遥控指令与数据,经判断、运算和处理之后,输出指令给伺服执行机构即舵机系统,控制操纵无人机的舵面、发动机的风门和前轮,以控制无人机的飞行或地面滑跑。 测定装置则主要负责测量无人机相关的状态信息,一般无人机的测量装置包括三轴向角速度陀螺、垂直陀螺、磁航向传感器、气压高度和高度差传感器、真实空速传感器、攻角和偏航角传感器、发动机转速传感器等。 舵回路(伺服系统)是以舵机为执行元件的、由若干部件组成的随动系统,它是影响飞控系统带宽的主要环节。舵回路按照指令模型装置或敏感元件输出的电信号来操纵舵面,实现无人机角运动或航迹运动的自动稳定和控制。在舵回路中常用的反馈有位置反馈(硬反馈)、速度反馈(软反馈)和均衡反馈(弹性反馈)三种。它们分别构成了硬反馈式、软反馈式和弹性反馈式这三种常见的舵回路形式。在本文的飞控系统设计和仿真中,我们均采用了硬反馈式的舵回路,其传递函数为: (4-1) 式中和分别称为静态增益和时间常数。可见,硬反馈式的舵回路的传函可近似为一个惯性环节。4.1.2飞控系统设计的基本思路常规无人机的飞行控制系统是一个多通道控制系统,即多输入多输出的控制系统。其输入量为传感器所采集到的无人机状态值,输出量为无人机状态方程的控制变量舵值和发动机推力。通常而言,我们要想控制飞机的运动必须首先考虑控制它的角运动,使其姿态发生变化,然后才能使它的重心轨迹发生相应的变化。因此,我们把以姿态角信号反馈为基础构成的飞行姿态稳定和控制回路(即内回路)称之为飞控系统的核心控制回路。同时,为了提高角控制系统的动态性能,我们还应该采用由角速率反馈所构成的阻尼回路来弥补现代高空高速无人机自身阻尼的不足,从而改善其姿态运动的稳定性。但有一点值得注意的是,阻尼系统只对短周期运动起良好的阻尼作用,而对于长周期运动的阻尼作用却是很弱的。飞控系统的内回路是飞行高度、航向、航迹等外回路控制的基础。其中,无人机的高度保持就是在俯仰角控制内回路的基础上,引入气压高度反馈信号构成飞行高度稳定外回路来实现的;航向控制与稳定是通过将航向信号反馈到滚转控制通道,构成飞行航向控制外回路来实现的;自主导航飞行是在飞行导航控制回路的基础上,引入侧偏距反馈构成航迹控制外回路来实现的。 一般来说,无人机的飞控系统通常包括俯仰、航向和横滚三个控制通道(有的系统只包括俯仰通道和横滚通道),每个通道都由一个控制面来控制。由于在横滚和航向通道之间常常存在着一定的交联,这就要求我们在设计飞控系统时一般需要考虑各通道间的独立性和关联性。为了便于飞控系统的设计,我们根据无人机沿纵向平面的对称性,通常可以将飞行控制在一定条件下分为相对独立的纵向控制通道和横侧向控制通道。其中,纵向控制通道可以稳定与控制无人机的俯仰角、高度、速度等;横侧向控制通道可以稳定与控制无人机的航向角、滚转角和偏航距离等。 作为整个飞控系统的核心,飞行控制律选取和设计的好坏往往会直接影响到整个飞控系统的性能。考虑到控制角运动是控制轨迹运动的基础,我们在具体设计飞行控制律时也应该先从控制角运动入手,首先保证角运动控制回路的性能,然后在此基础上进行轨迹运动控制回路的设计。 因此在本文中,我们针对纵向系统,首先研究无人机俯仰姿态保持/控制模态控制律的设计,然后再研究其高度保持/控制模态下控制律的设计问题;针对横侧向系统,则先研究了倾斜姿态保持/控制模态控制律的设计,然后对航向保持/控制模态下控制律的设计问题进行了探讨。 在飞行控制律设计的初步阶段,我们可以暂不考虑伺服回路、传感器和等效时延等非线性因素对闭环系统的影响,充分利用相关经典控制理论,合理的设计出控制器的结构与参数,使系统的时域响应和频域响应都能达到相应技术指标的要求;然后,再考虑系统的非线性因素,对参数重新进行调整。实践证明,这种设计方法简单易行,是工程实际中比较容易操作的设计方法。 由于无人机的动态特性会随着飞行条件(如高度、速度等)的不同而产生较大的变化,所以,我们有必要将整个飞行包线所在的区域划分成许多不同的小区域,然后分别针对每个不同的区域设计参数不同控制器,或者我们也可以将控制律设置成可随行条件变化的调参增益。 在本文中,我们粗略的将无人机的飞行区间划分成中空、高空和高高空三个不同的空域,然后分别在每个空域选取了两三个典型的状态点,各状态点的具体信息如表4-1所示。 表4-1不同空域内无人机典型状态点一览表空域状 态 点高 度(m)速 度(Ma)中空 47220.774B36440.462高空 12249 0.809D121270.787高高空 171940.719 178580.746F175050.801 上表中列出了我们在后面进行无人机飞行控制律设计和仿真时将要用到的所有状态点的信息,表格中带星号的点即表示我们设计控制器时所选取的基准状态点。在本文中,我们的主要设计任务就是针对不同空域内的基准状态点(A、C、E和G点)分别设计不同的控制器,然后把所设计好的控制器分别用于各基准状态点附近的状态点(B、D和F点),以考察我们所设计控制器的鲁棒性。另外,这里还有一点要特别说明的是,在高高空领域内,E点为我们所选取的针对纵向系统的基准状态点,G点为针对横侧向系统的基准状态点。至于无人机在各典型态点处的具体线性化模型我们将在附录C中全部给出。 这里,应该指出的是,在实际飞控系统的设计中,我们通常需要对飞行区间进行更为细致的划分,而且应该选取较多的典型状态点作为设计控制器的基准点。我们在这里仅选取了少量的状态点,其目的是为了从一个小的侧面对所设计的控制律进行仿真验4.2俯仰姿态保持/控制模态控制律的设计与仿真 俯仰姿态控制模态通常在飞机水平飞行状态和短时间下滑、爬升状态下使用。其中控制系统的输入量是俯仰姿态角,传感器是姿态参考陀螺。 俯仰姿态保持模态可以将飞机保持在给定的俯仰姿态,也可以称为参考姿态,它是由飞控计算机根据某种飞行状态(水平飞行,爬升,下滑)的需要而建立的,控制系统接通后就力图保持这种姿态为常值。其功用就是:当飞控计算机根据需要(如为了防撞)突然要操纵无人机到某一新的姿态时,此时姿态保持功能自动解除,但却保持与新姿态值同步,这样当飞控计算机重新接通姿态保持模态的功能时,飞控系统将无人机保持于最后姿态,这样可以保证飞机平稳飞行,然后通过重新设置值,可是无人机逐渐过渡到所需的姿态。 由于迎角随着飞行状态变化而变化,所以这种模态下控制器并不能保持俯仰航迹角为常值,如果增加推力,飞机将爬升;并且随着燃油的消耗,重量将随之减轻,也会使飞机逐渐爬升;同样地,由于空气密度随高度增高而降低,爬升的飞机将趋于改平。基于上述这些特性,俯仰姿态保持本省其实并不是十分重要,但它却是飞控系统中高度保持、自动着陆等其它模态的内回路。4.2.1俯仰角控制率的设计(1)控制结构 整个俯仰角控制系统的原理结构光秃如图4-1所示。从图中我们可以看到,整个控制系统是由外回路(俯仰角反馈回路)和内回路(俯仰角速率反馈回路)构成的。其中内回路中的俯仰角速率信号由俯仰角速率陀螺提供;外回路中的俯仰角信号由垂直陀螺提供。内回路中的俯仰角速率反馈的引入相当于改变了无人机的纵向阻尼导数,增加了特德纵向阻尼,从而使其短周期模态的阻尼特性得到了改善;外回路则构成了俯仰角稳定回路,可以改善无人机长周期模态的阻尼特性。 通常,我们还在需要加入俯仰速率先付以限制过载;在俯仰角指令入口处,要加上俯仰角限幅;如引入俯仰角加速度的话,还可以达到提高系统稳定性的目的。 图4-1 俯仰角控制系统原理结构框图 图中,在阻尼回路中还包括了一个洗出网络,如果没有这个洗出网络,当操纵飞机做稳态拉齐的机动飞行时,阻尼器输出的稳态就会成为阻碍因素,而使这种机动飞机难以完成。洗出网络的作用就是在飞机稳态拉起时或等高盘旋时(因此存在一个稳态的分量),阻尼器信号除掉。 这样,整个无人机俯仰角控制系统控制律的结构就如图.42所示。图中,为给定的指令信号,为垂直陀螺所测得的俯仰角信号,为俯仰角速率陀螺所测得的俯仰角速率信号信。因此,其控制律可以表示成: (4-2)当我们采用常规PID,控制结构时 (4-3) 4-2 控制角控制系统控制律结构图 在实际工程中,微分环节通常用一个高通滤波器来实现,我们通过选择适当的值,就可以获得相应的相位超前信号。从频率特性来看,高通网络是一个阻低频通高频的网络,同时它也是一个能提供相位超前的网络,因此,我们就可以把高通滤波器看成是一个微分网络。其中的值越大,相位超前也就越大,我们所获得的信号也就越近似于微分信号。我们在后面的无人机纵向飞行控制律的仿真中,一律取。 另外,积分环节也可以根据其定义在软件中计算实现,其中,可在软件中根据CPU的计算频率得到。由于积分是一个连续累加的过程,所以信号的积分值可能会达到一个很大的值,这会给系统带来意想不到的结果。由于执行机构受限,当积分值大到一定程度,使执行机构达到最大位置后,执行机构就不再变化了,而是一直停留在当前的位置,即使系统输出一直在变化,这样反馈通道就被破坏了。另一方面,当被积信号开始减小时,如果积分值很大的话,则需要花很长时间才能使其降到正常值,我们一般把这种现象称之为积分饱和。通常有两种方法可以有效的避免这种现象的发生:一种方法是当执行机构达到最大位置时积分停止,不再继续累加;另一个可行的方法是限制积分的累加,当积分值达到某一个值时就恒等于当前值,即所谓的积分限幅。因此,当我们采用常规PID控制策略时尤其要注意采取必要的措施防止积分饱和现象的发生。(2)控制律参数的选取 本章中,无人机的纵向运动都是通过升降舵来完成自动控制的,因此,我们可以将其纵向运动的自动控制系统看成是一个单通道,这样就便于我们运用相关经典控制的理论对系统进行分析和设计。 对于无人机的俯仰角控制系统而言,其控制律参数的选取包括两部分:第一部分是阻尼回路(即内回路)反馈增益的确定:第二部分便是俯仰角控制回路(即外回路)中PID参数的确定。一般来讲,选择这些参数主要有两种方法:第一种方法是综合考虑所有回路中的参数,一次选定;另一种方法则是从最内层开始分部选取。本文中,我们将采用后一种方法,即先设计阻尼回路,确定参数,然后以此为基础设计姿态角控制回路,进而确定PID参数的值。 下面,我们以某无人机在高高空某一状态点E(H=17194m,V=0.719Ma)为例,说明无人机俯仰角控制系统控制器参数的选取过程。已知该无人机在E点处的状态方程和输出方程可表示: ,式中 (4-4) 因此,并且有。于是,我们可以得到 (4-5) 从上式中我们可以看到,系统的特征方程中包含有一个正根。可见,为了增加该无人机的机动性,飞机的设计者将其设计成了静不稳定的,因此必须加入飞行自动控制系统才能保证飞机的稳定飞行。另外,我们还可以看到,该无人机的自然频率为2.54,阻尼比仅为0.14,可见,飞机自身的阻尼是很弱的。从这一个方面我们就可以看出,针对该高空弱阻尼无人机而言,加入角速率反馈回路是必须的。图4.3给出了无人机在高高空E点处俯仰角控制系统PID控制结构图。 图4-3 俯仰角控制系统PID控制结构图(高高空E点) 图中,表示升降舵回路传递函数,表示升降舵通道的洗出网络。根据上图,我们就可以利用MATLAB提供的rlocus函数根据系统阻尼回路的开环传函画出其根轨迹图。其中根轨迹增益即为我们所要确定的阻尼回路参数。 图4.4无人机俯仰角速率回路根轨迹图(高高空E点) 由图可知,一开始随着的增大,阻尼回路中的一对共扼复根的振荡阻尼得到了明显的改善,当增加到0.6时(即图中黑色小方块所在位置)振荡根的阻尼比达到最大值0.802。此后,随着的增加,阻尼比开始减小,自然频率增高,最终将导致系统品质显著恶化。通过对根轨迹的分析,我们可以知道,并非越大阻尼效果就越显著,只有当在某一范围内时,这一条件才会成立。为此,我们选取,此时共轭复根所对应的阻尼比为0.696,超调为4.77%,自然频率为3.49rad/s.从而可以很好的改善无人机短周期运动的阻尼。至此,无人机阻尼回路的参数设计完毕。4.2.2俯仰角控制律的仿真 在本文中,所有关于飞行控制律的仿真均在MATLAB7.6平台下完成。图4.6即为无人机基于PID控制的俯仰角控制系统的simulink仿真框图。值得注意的是,图中的PID模块并非MATLAB提供的原始模块,我们已经把该原始模块所封装的子系统作了一些变动:当采用PID控制策略进行仿真时,图中PID模块所封装的子系统即为经典的PID模块,为了使仿真更接近工程实际,我们以一个超前网络模块,s/(0.1s+1)来代替原有的纯微分模块; 另外,仿真框图中无人机纵向线性化模型的C和D矩阵与4.2.1节所定义的一致,至于不同状态点处A和B矩阵的具体值将全部在附录C中给出。在整个俯仰角控制律仿真过程中,升降舵回路传递函数用惯性环节表示,升降舵通道的洗出网络用高通滤波器表示,升降舵面限幅为,输入的俯仰角指令阶跃信号为。 图4.6 基于PID的俯仰角控制系统仿真框图 在上一章中,我们已经介绍了一些常用的PID参数整定法,这些方法(尤其是经验公式法)对于无人机这样的被控对象而言虽然不一定会很有效,但可以作为我们选取PID参数的一个依据。本文采用衰减曲线法,具体步骤如下:1)置调节积分时间为最大值。微分时间为零,比例系数为较小值并投入运行。2)待系统稳定后,做设定值阶跃扰动,并观察系统响应。如图所示当的衰减振荡过程。振荡周期=1.25.图4-7 K=3.4时的系统阶跃响应3)根据利用表3-3给出的衰减曲线法整定计算公式,求 图4-8 PID下俯仰角阶跃响应(E点)从图中可知,其超调量,调节时间5.5。下面,我们通过MATLAB来仿真验证一下所设计的控制系统是否能保证足够的相角裕度和幅值裕度。通过MATLAB所提供的margin函数,我们可以画出标有幅值裕度和相角裕度的波特图(图4-5所示)。 图4-9 基于PID的俯仰角控制系统波特图(高高空E点) 由图可知,在该组PID参数之下俯仰角控制系统在高高空E点的相角裕度为,幅值裕度为6.33dB6dB显然满足要求。 对于阶跃响应信号而言,我们在这里还有两点需要补充说明一下: (l)为了便于对仿真结果进行统一的比较,对于本文中所有角控制系统的仿真而言一律将阶跃指令信号设为。 (2)由于无人机的线性化模型是建立在小扰动线性化方法基础上的,因此对于大角度的阶跃响应而言,我们应该采用原始的非线性模型进行仿真。 根据表4-1,我们分别针对中空和高空域内的基准状态点A和C设计了PID控制器。然后将所设计好的控制器分别用于A点附近的B点,C点附近的D点,E点附近的F点。全部仿真结果分别如下所示:图4-10 PID下俯仰角阶跃响应(A点)图4-10 PID下俯仰角阶跃响应(B点) 图4-10 PID下俯仰角阶跃响应(C点) 图 4-10 PID下俯仰角阶跃响应(D点)图4-10 PID下俯仰角阶跃响应(F点)4.3高度保持/控制模态控制律的设计与仿真 高度控制属于飞机的重心控制,在飞机的编队飞行、执行轰炸任务、远距离巡航及进场着陆时的初始阶段等都要保持高度的稳定。 无人机的高度保持与控制是不能仅靠其俯仰角的稳定与控制来完成的。当飞机受到纵向常值干扰力矩时,硬反馈式角稳定系统存在着俯仰角及航迹倾斜角静差,角稳定系统虽能保持飞行器在垂风气流作用下的俯仰角稳定,但几秒钟后飞行速度向量将偏离原方向,产生高度漂移。另外,在俯仰角稳定的动态过程中,如果航迹倾斜角变化量平均值不为零,也会引起飞行高度的改变。所以高度保持系统需要有测量相对于给定高度偏差的测量装置高度差传感器,如气压高度表、无线电高度表和大气数据传感器等。将高度偏差信号输入俯仰角控制系统,控制飞机的姿态,改变飞机的航迹倾斜角,控制飞机的升降,_自至高度差为零,使飞机回到预定高度。 原则上讲,可以通过控制升降舵或控制发动机推力的大小来控制飞行高度。但借助于控制推力来控制飞行高度不很有效,因推力改变使飞行速度改变后,飞行高度才开始变化。由于惯性的作用,飞行速度的变化是缓慢的,故高度变化的过渡过程也是缓慢的。因此,我们在这里只讨论利用升降舵来控制高度的高度控制系统的设计。4.3.1控制结构与控制策略 飞行高度控制系统是在飞机纵向姿态控制系统的基础上再加上高度控制敏感元件构成的。我们在设计高度控制系统时通常不再改变已设计好的姿态控制系统。当需要单独对飞机的姿态角进行保持和控制时,我们只须简单的将高度差测量装置断开即可,从而使得飞行状态的转换非常方便。 图4.19即为无人机高度控制系统原理框图。图中,作为内回路的俯仰角反馈系统对于高度保持系统起了很好的阻尼作用,可以在一定程度上减小系统的振荡,增加稳定性。为了进一步增加系统长周期运动的阻尼,我们还应引入高度微分信号的反馈。 图4-11 高度控制系统原理框图这样,整个无人机俯高度控制系统的控制律的结构就如图4-12所示。图中,为给定的高度偏差指令,为高度传感器所测得的高度偏差信号。另外,俯仰内回路中各符号的具体含义均与上一节中的一致,这里不再赘述。 图4-12 高度控制系统控制律结构图 对于高度控制回路而言,高度偏差信号和高度变化率的反馈,可以满足在一个飞行状态高度阶跃响应的要求,然而考虑到无人机在整个包线范围内不同的平衡状态变化,我们还需要加一个积分环节,以保证无人机的无静差飞行。这样,无人机高度控制系统的控制律就可以表示成:当我们采用常规PID控制结构时: 这里,我们还要特别强调一点,在高度控制系统中,相对于给定高俯仰角的偏离信号反馈是至关重要的。若控制中没有俯仰角的偏离信号,则在高度稳定过程中舵总是向上偏转,导致升力增量总为正,轨迹总是向上弯曲。当无人机到达给定高度时,由于速度向量不在水平位置而超越给定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境保护与施工后期恢复综合措施
- 2025年混凝土电杆行业研究报告及未来发展趋势预测
- 2025年机器翻译行业研究报告及未来发展趋势预测
- 2025年电梯考试考前冲刺测试卷及参考答案详解(培优A卷)
- 医疗机构护士操作规范手册
- 2025年活塞式隔膜泵行业研究报告及未来发展趋势预测
- 2025年环卫机械设备行业研究报告及未来发展趋势预测
- 电商网站建设全流程实施方案
- 2025中考数学总复习《数据与统计图表》能力提升B卷题库(综合卷)附答案详解
- 中小学科研项目申报指导及实例分析
- 江苏省制造业领域人工智能技术应用场景参考指引2025年版
- 9.18事变防空演练方案3篇2025
- 三级医师查房制度考试题(含答案)
- 急性心肌梗死病人护理
- 2025年充换电站项目建议书
- 文旅公司考试试题及答案
- 成都银行招聘考试真题2024
- 专利代理培训课件
- 人教版(PEP)(2024)英语四年级上册2025-2026学年教学计划
- 浙江省名校协作体2025-2026学年高二上学期开学联考英语试卷(PDF版含答案含听力原文无音频)
- GJB3243A-2021电子元器件表面安装要求
评论
0/150
提交评论