




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2等差数列的前n项和(第二课时),等差数列的前n项和的函数特性及最大致与最小值,等差数列的前n项和公式:,形式1:,形式2:,复习回顾,一、常用数列的求和方法:,(3)裂项法:设an是等差数列,公差d0,新课讲授,(4)倒序相加法:用于与首末两端等距离的和相等。,.将等差数列前n项和公式看作是一个关于n的函数,这个函数有什么特点?,Sn是关于n的二次式,常数项为零。(d可以为零),则Sn=An2+Bn,令,新课讲授,结论1:若数列an的前n项和为Sn=pn2+qn,,(p,q为常数)是关于n的二次式,则数列an是等差数列。,当d0时,Sn是常数项为零的二次函数,若C0,则数列an不是等差数列。,若C=0,则an为等差数列;,结论2:设数列an的前n项和为Sn=An2+Bn+C,(A,B,C是常数),当d=0时,Sn=na1不是二次函数,问题与思考,例1若一个等差数列前3项和为34,最后三项和为146,且所有项的和为390,则这个数列共有_项。,13,例2已知数列an中Sn=2n2+3n,求证:an是等差数列.,例1、若等差数列an前4项和是2,前9项和是6,求其前n项和的公式。,解:设首项为a1,公差为d,则有:,设Sn=an2+bn,依题意得:S4=2,S9=6,即,解之得:,另解:,等差数列的前n项的最值问题,例1.已知等差数列an中,a1=13且S3=S11,求n取何值时,Sn取最大值.,解法1,由S3=S11得,d=2,当n=7时,Sn取最大值49.,等差数列的前n项的最值问题,例1.已知等差数列an中,a1=13且S3=S11,求n取何值时,Sn取最大值.,解法2,由S3=S11得,d=20,a80,d0时,数列前面有若干项为负,此时所有负项的和为Sn的最小值,其n的值由an0且an+10求得.,练习:已知数列an的通项为an=26-2n,要使此数列的前n项和最大,则n的值为()A.12B.13C.12或13D.14,C,当d0时,Sn是常数项为零的二次函数,则Sn=An2+Bn,令,小结,Sn是关于n的二次式,常数项为零。(d可以为零),结论1:若数列an的前n项和为Sn=pn2+qn,,(p,q为常数)是关于n的二次式,则数列an是等差数列。,若C0,则数列an不是等差数列。,若C=0,则an为等差数列;,结论2:设数列an的前n项和为Sn=An2+Bn+C,(A,B,C是常数),小结,结论:3:等差数列前n项和不一定是关于n的二次函数:,(1)当d0是,sn是项数n的二次函数,且不含常数项;,(2)当d=0是,sn=na1,不是项数n的二次函数。,反之,关于n的二次函数也不一定是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多模态皮纹识别技术-洞察及研究
- 不良资产处置行业市场格局与绿色金融融合研究报告
- 小学一年级汉字识字教学设计范例
- 人工智能在景区导览系统中的应用-洞察及研究
- 培养中学生体育兴趣的有效策略
- 食品行业食品安全追溯体系与食品安全教育培训报告
- 2025年光伏建筑一体化项目在绿色建筑中的应用效益分析报告
- 危机预警模型研究与应用-洞察及研究
- 石材设计与现代建筑的融合-洞察及研究
- 海关监管自动化设备研究-洞察及研究
- 2.3河流与湖泊第1课时课件-八年级地理上学期人教版
- 专题04 利用基本不等式求最值(压轴题8大类型专项训练)数学人教A版2019必修一(解析版)
- 2025上海浦东新区浦东公安分局文员招聘300人考试参考题库及答案解析
- 风险限额管理与应用
- 工程结算审核工作方案(3篇)
- 秋季企业施工安全培训内容课件
- 2025年秋期新教材人音版三年级上册小学音乐教学计划+进度表
- 保健行业员工知识培训课件
- 中国心房颤动管理指南(2025)解读
- 2025年成人高考专升本民法真题及答案
- 2025-2026学年陕旅版(三起)(2024)小学英语四年级上册(全册)教学设计(附目录)
评论
0/150
提交评论