




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019/12/19,宁波大学教师教育学院,1,二、无界函数广义积分的收敛判别法,广义积分,无穷限的广义积分,无界函数的广义积分,一、无穷限广义积分的收敛判别法,2广义积分的收敛判别法,2019/12/19,宁波大学教师教育学院,2,一、无穷限广义积分的收敛判别法,定理1.,若函数,证:,根据极限收敛准则知,存在,2019/12/19,宁波大学教师教育学院,3,(Cauchy收敛原理),定理2.,证:利用无穷限广义积分收敛的定义以及极限存在的Cauchy准则即得。,2019/12/19,宁波大学教师教育学院,4,柯西(Cauchy,AugustinLouis1789-1857),十九世纪前半世纪的法国数学家。1789年8月21日生于巴黎。在大学毕业后当土木工程师,因数学上的成就被推荐为科学院院士,同时任工科大学教授。后来在巴黎大学任教授,一直到逝世。在代数学上,他有行列式论和群论的创始性的功绩;在理论物理学、光学弹性理论等方面,也有显著的贡献。他的特长是在分析学方面,他对微积分给出了严密的基础。他还证明了复变函数论的主要定理以及在实变数和复变数的情况下微分方程解的存在定理。1821年,在拉普拉斯和泊松的鼓励下,柯西出版了分析教程、无穷小计算讲义、无穷小计算在几何中的应用这几部划时代的著作。他给出了分析学一系列基本概念的严格定义。柯西的极限定义至今还在普遍使用,连续、导数、微分、积分、无穷级数的和等概念也建立在较为坚实的基础上。,2019/12/19,宁波大学教师教育学院,5,定理3.(比较原理),且对充,则,证:不失一般性,因此,单调递增有上界函数,2019/12/19,宁波大学教师教育学院,6,说明:已知,得下列比较判别法.,极限存在,2019/12/19,宁波大学教师教育学院,7,定理4.(比较判别法1),2019/12/19,宁波大学教师教育学院,8,例1.判别广义积分,解:,的收敛性.,由比较判别法1可知原积分收敛.,思考题:讨论广义积分,的收敛性.,提示:当x1时,利用,可知原积分发散.,2019/12/19,宁波大学教师教育学院,9,定理5.(极限判别法1),则有:,1)当,2)当,证:1),根据极限定义,对取定的,当x充,分大时,必有,即,满足,2019/12/19,宁波大学教师教育学院,10,2)当,可取,必有,即,注意:,此极限的大小刻画了,2019/12/19,宁波大学教师教育学院,11,例2.判别广义积分,的收敛性.,解:,根据极限判别法1,该积分收敛.,例3.判别广义积分,的收敛性.,解:,根据极限判别法1,该积分发散.,2019/12/19,宁波大学教师教育学院,12,定理6.,证:,则,而,2019/12/19,宁波大学教师教育学院,13,定义.设广义积分,则称,绝对收敛;,则称,条件收敛.,例4.判断广义积分,的收敛性.,解:,根据比,较判别法知,,故由定理6知所,给积分收敛,(绝对收敛).,2019/12/19,宁波大学教师教育学院,14,无界函数的广义积分可转化为无穷限的广义积分.,二、无界函数广义积分的收敛判别法,由定义,例如,因此无穷限广义积分的收敛判别法完全可平移到无界函数,的广义积分中来.,2019/12/19,宁波大学教师教育学院,15,定理7.(比较判别法2),定理3,瑕点,有,有,利用,类似定理4与定理5,有如下的收敛判别法.,使对一切充分接近a的x(xa).,2019/12/19,宁波大学教师教育学院,16,定理8.(极限判别法2),则有:,1)当,2)当,例5.判别广义积分,解:,利用洛必达法则得,根据极限判别法2,所给积分发散.,2019/12/19,17,可编辑,2019/12/19,宁波大学教师教育学院,18,例6.判定椭圆积分,定理4,敛性.,解:,由于,的收,根据极限判别法2,椭圆积分收敛.,2019/12/19,宁波大学教师教育学院,19,类似定理6,有下列结论:,例7.判别广义积分,的收敛性.,解:,称为绝对收敛.,故对充分小,从而,据比较判别法2,所给积分绝对收敛.,则广义积分,2019/12/19,宁波大学教师教育学院,20,三、函数,1.定义,下面证明这个特殊函数在,内收敛.,令,2019/12/19,宁波大学教师教育学院,21,综上所述,2019/12/19,宁波大学教师教育学院,22,2.性质,(1)递推公式,证:,(分部积分),注意到:,2019/12/19,宁波大学教师教育学院,23,(2),证:,(3)余元公式:,(证明略),2019/12/19,宁波大学教师教育学院,24,(4),得应用中常见的积分,这表明左端的积分可用函数来计算.,例如,2019/12/19,宁波大学教师教育学院,25,四、*A-D判别法,定理9,(1)(Abel判别法),(2)(Dirichlet判别法),2019/12/19,宁波大学教师教育学院,26,阿贝尔(Abel,NielsHenrik,1802-1829),挪威数学家。1802年8月5日生于芬岛,1829年4月6日卒于弗鲁兰。是克里斯蒂安尼亚(现在的奥斯陆)教区穷牧师的六个孩子之一。阿贝尔在他的所有著作中都打下了天才的烙印和表现出了不起的思维能力。我们可以说他能够穿透一切障碍深入问题的根底,具有似乎无坚不摧的气势.。他又以品格纯朴高尚以及罕见的谦逊精神出众,使他人品也像他的天才那样受到人们不同寻常的爱戴。”数学家们有法纪念他们中的伟人,我们常说阿贝尔积分、阿贝尔积分方程、阿贝尔函数、阿贝尔群、阿贝尔级数、阿贝尔部分和公式、阿贝尔收敛判别法、阿贝尔可和性。很少有几个数学家能使他的名字同数学中的这么多概念和定理联系在一起。,2019/12/19,宁波大学教师教育学院,27,狄利克莱(Dirichlet)(1805-1859)德国数学家。解析数论的创始人之一。在数论方面关于Fermat方程,先后给出了n=5,n=14时无整数解的证明。他著有数论讲义(1863,遗著),对Gauss的算术研究作出了清楚的解释并有自己的独创。他证明了在任何算术序列a+nb(其中a与b互素)中,必存在无穷多个素数,这就是著名的Dirichlet定理。他在分析学和数学物理方面也有很多重大贡献。在1892年的论文“关于三角级数的收敛性”中得到给定函数f(x)的Fourier级数收敛的第一充分条件.这一研究还促使他将函数作了一般化推广。1829,他给出了具有典型意义的函数:称为Dirichlet函数。这一工作使得数学从研究函数的计算转变到研究函数的概念,性质和结构。他在1837年证明了:对一个绝对收敛级数,可以把它的项加以组合重新排列,而不改变原级数的和,并举例说明对一个条件收敛级数则不然。他修改了Gauss关于位函数论的一个原理,引入了所谓Dirichlet原理。还论述了著名的第一边值问题(现称为Dirichlet问题)。Dirichlet是Gauss的学生和继承人。他毕生敬仰Gauss.他说Gauss的讲课是“一生所听过的最好,最难忘的课。”1855年,Gauss逝世后,他作为Gauss的继承者被哥丁根大学聘为教授,接替Gauss原任的职务,直到逝世。,2019/12/19,宁波大学教师教育学院,28,例8,解,2019/12/19,宁波大学教师教育学院,29,例9,解,2019/12/19,宁波大学教师教育学院,30,与定理9类似,我们有,(1)(Abel判别法),(2)(Dirichlet判别法),2019/12/19,宁波大学教师教育学院,31,内容小结,1.两类广义积分的比较判别法和极限判别法.,2.若在同一积分式中出现两类广义积分,习题课,可通过分项,使每一项只含一种类型的广
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训矩阵模板课件
- 东南亚跨境电商市场产品退货与售后服务报告:2025年优化策略
- 安徽银行考试试卷及答案
- 体育套路题库及答案
- pe焊工考试试题及答案
- 2025年头脑玩者题库及答案
- 安全培训的验证效果课件
- 2025年春新人教版化学九年级下册大单元设计全册教案
- 2025年新疆兵团遴选考试题及答案
- 2025年药厂冷库试卷及答案
- 光伏行业环境管理
- 口腔护理论文-口腔论文-临床医学论文-医学论文
- 部队油库承包合同协议
- 江苏语文单招试题及答案
- 2024第41届全国中学生物理竞赛预赛试题(含答案)
- 诊所护士劳动合同协议
- 重庆市两江育才中学校2023-2024学年高一上学期期中考试英语 含解析
- TCAICI39-2022《通信光缆附挂供电杆路技术规范》
- 碳市场发展对天然气行业影响的研究报告
- 2025年国家保安员资格考试模拟100题及答案
- 防火公路施工方案
评论
0/150
提交评论