




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 1 2空间中直线与直线之间的位置关系习题课 问题一 异面直线的判定 例1 已知m n为异面直线 m 平面 n 平面 l 则l A 与m n都相交B 与m n中至少一条相交C 与m n都不相交D 与m n中的一条直线相交 例2 已知点P Q R S分别是正方体的四条棱的中点 则直线PQ与RS是异面直线的一个图是 例3 如图 已知 a b c b a A c a 求证 b与c是异面直线 证明 假设b与c不是异面直线 则b c或b与c相交 1 若b c a c a b与a b A矛盾 2 若b与c相交 设b c B a c B a 即A B两点不重合 这样直线b上有两点A B b 又b b是 与 的公共直线 又 a b与a重合 这与b a A矛盾 b与c是异面直线 异面直线的证明 1 反证法 假设两直线共面 随后导出矛盾 故两直线异面 2 过平面外一点与平面内一点的直线和平面内不过该点的直线是异面直线 异面直线判定定理 问题二 求异面直线所成的角 预备知识 角的知识 正弦定理a 2RsinAa 2RsinA S ABC bcsinA 余弦定理 A B C b c a cosA 二 数学思想 方法 步骤 解决空间角的问题涉及的数学思想主要是化归与转化 即把空间的角转化为平面的角 进而转化为三角形的内角 然后通过解三角形求得 2 方法 3 步骤 求异面直线所成的角 作 找 证 点 算 1 数学思想 例4 在正方体ABCD A1B1C1D1中 棱长为4 1 求直线BA1和CC1所成的角的大小 2 若M N分别为棱A1B1和B1B的中点 求直线AM与CN所成的角的余弦值 M N P Q BQ 1 BN 2 QC NC Cos QNC 例5 在正方体ABCD A B C D 中 棱长为a E F分别是棱A B B C 的中点 求 异面直线AD与EF所成角的大小 异面直线B C与EF所成角的大小 异面直线B D与EF所成角的大小 异面直线B C与EF所成角的大小 O G AC A C EF OG B D B D与EF所成的角即为AC与OG所成的角 即为 AOG或其补角 平移法 补形法 例6空间四边形SABC中 SA SB SC AB BC CA E F分别是SA BC中点 则异面直线EF与SC所成的角 900 S是正 ABC所在平面外一点 SA SB SC且 ASB BSC CSA 90 M N分别是AB和SC的中点 求异面直线SM与BN所成的角 P a a a 例7 三 例8 例9 如图 在正三角形ABC中 D E F分别为各边的中点 G H I J分别为AF AD BE DE的中点 将 ABC沿DE EF DF折成三棱锥以后 GH与IJ所成角的度数为 解析 折起后 空间图形如图 A B C三点重合为一点A 在 BDE中 IJ BD 在 ADF中 GH DF 折起后 IJ A D 直线DF与A D所成的角就是HG与IJ所成的角 在正 A DF中 A DF 60 2019 12 19 22 可编辑 例 10由四个全等的等边三角形围成的封闭几何体称为正四面体 如图 正四面体ABCD中 E F分别是棱BC AD的中点 CF与DE是一对异面直线 在图形中适当的选取一点作出异面直线CF DE的平行线 找出异面直线CF与DE所成的角 解析 思路1 选取平面ACD 该平面有以下两个特点 该平面包含直线CF 该平面与DE相交于点D 伸展平面ACD 在该平面中 过点D作DM CF交AC的延长线于M 连结EM 可以看出 DE与DM所成的角 即为异面直线DE与CF所成的角 如图1 思路2 选取平面BCF 该平面有以下两个特点 该平面包含直线CF 该平面与DE相交于点E 在平面BCF中 过点E作CF的平行线交BF于点N 连结ND 可以看出 EN与ED所成的角 即为异面直线FC与ED所成的角 如图2 思路3 选取平面ADE 该平面有如下两个特点 该平面包含直线DE 该平面与CF相交于点F 在平面ADE中 过点F作FG DE 与AE相交于点G 连结CG 可以看出 FG与FC所成的角 即为异面直线CF与DE所成的角 如图3 思路4 选取平面BCD 该平面有如下特点 该平面包含直线DE 该平面与CF相交于点C 伸展平面BCD 在该平面内过点C作CK DE与BD的延长线交于点K 且DK BD 连结FK 则CF与CK所成的角 即为异面直线CF与DE所成的角 如图4 总结评述 1 上面四个思路的共同点是 由两条异面直线中的一条与另一条上一个点确定一个平面 在该平面内过该点作该直线的平行线 从而找出两条异面直线所成的角 这是立体几何 化异为共 降维 的基本思想 2 求两条异面直线所成角的关键是作出这两条异面直线所成的角 作两条异面直线所成的角的方法是 将其中一条平移到某个位置使其与另一条相交或是将两条异面直线同时平移到某个位置使它们相交 然后在同一平面内求相交直线所成的角 值得注意的是 平移后相交所得的角必须容易算出 因此平移时要求选择恰当位置 一般提倡像思路2 思路3那样作角 因为此角在几何体内部 易求 3 找出异面直线所成的角后求角的大小 一般要归到一个三角形中 通过解三角形求出角的大小 如本题思路1中可归结为解 DEM 思路2中可归结为解 DEN等等 由于本例中三角形是斜三角形 待我们学过解斜三角形后 即可计算 4 实际问题中 若含有 中点 比例点 常利用中位线 比例线段进行平移 10 A为正三角形BCD所在平面外一点 且AB AC AD BC a E F分别是棱AD BC的中点 连结AF CE 如图所示 求异面直线AF CE所成角的余弦值 G 解 连结DF 取DF的中点G 连结EG CG 又E是AD的中点 故EG AF 所以 GEC 或其补角 是异面直线AF CE所成的角 异面直线AF CE所成角的余弦值是 11 A为正三角形BCD所在平面外一点 且AB AC AD BC a E F分别是棱AD BC的中点 连结AF CE 如图所示 求异面直线AF CE所成角的余弦值 P 另解 延长DC至P 使DC CP E为AD中点 AP EC 故 PAF 或其补角 为异面直线AF CE所成的角 异面直线AF CE所成角的余弦值是 练习1 如图 P为 ABC所在平面外一点 PC AB PC AB 2 E F分别为PA和BC的中点 1 求证 EF与PC为异面直线 2 求EF与PC所成的角 3 求线段EF的长 假设EF与PC不是异面直线 则EF与PC共面由题意可知其平面为PBC 这与已知P为 ABC所在平面外一点矛盾 P A B C M N 12 空间四边形P ABC中 M N分别是PB AC的中点 PA BC 4 MN 3 求PA与BC所成的角 A D C B A1 D1 C1 B1 变题 已知正方体ABCD A1B1C1D1中 棱长为a O为底面中心 F为DD1中点E在A1B1上 求AF与OE所成的角 O E F N A D C B A1 D1 C1 B1 2 若M为A1B1的中点 N为BB1的中点 求异面直线AM与CN所成的角 N M F E 例14 如图 在三棱锥D ABC中 DA 平面ABC ACB 90 ABD 30 AC BC 求异面直线AB与CD所成的角的余弦值 A B C D 四面体A BCD的棱长均为a E F分别为棱BC AD的中点 1 求异面直线CF和BD所成的角的余弦值 2 求CF与DE所成的角 思考题 E F P Q 异面直线所成的角的求法 典例剖析 例1 如图正方体AC1 求异面直线AB1和CC1所成角的大小 求异面直线AB1和A1D所成角的大小 分析 1 做异面直线的平行线2 说明哪个角就是所求角3 把角放到平面图形中求解 解 CC1 BB1 AB1和BB1所成的锐角是异面直线AB1和CC1所成的角 在 ABB1中 AB1和BB1所成的角是450 异面直线AB1和CC1所成的角是450 异面直线所成的角的求法 典例剖析 例1 如图正方体AC1 求异面直线AB1和CC1所成角的大小 求异面直线AB1和A1D所成角的大小 分析 1 做异面直线的平行线2 说明哪个角就是所求角3 把角放到平面图形中求解 在面A1B1CD中 A1B1CD A1D B1C AB1和B1C所成的锐角是异面直线AB1和A1D所成的角 在 AB1C中 AB1和CC1所成的角是600 异面直线AB1和A1D所成的角是600 正方体ABCD A1B1C1D1中 P为BB1的中点 如图画出下面各题中指定的异面直线 P 异面直线所成的角是锐角或直角 当三角形内角是钝角时 表示异面直线所成的角是它的补角 以第三幅图为例 设正方体的棱长为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 双循环背景下辽宁省水产品出口竞争力及发展对策研究
- 基于分布式LEO-MIMO系统的预编码更新算法研究
- 面对挫折的勇气议论文13篇
- 卢卡奇物化理论及其当代价值研究
- 基于区块链的物联网数据共享安全研究
- 基于深度学习的点云配准技术研究
- 春节放烟花作文500字(13篇)
- 2024年安徽皖西学院招聘专职辅导员笔试真题
- 城乡居民宅基地上合作建房合同效力判定研究
- 社区护理医学课件
- 水产育苗场管理制度
- 致命性肺血栓栓塞症急救护理专家共识(2024版)解读
- 济宁医学院《科学技术哲学》2023-2024学年第二学期期末试卷
- 2025年医药代表职业资格考试试题及答案
- 中考物理考前指导最后一课
- 23秋国家开放大学《液压气动技术》形考任务1-3参考答案
- 21ZJ111 变形缝建筑构造
- 《2021国标建筑专业图集资料》02J611-3 电动上翻门(电动或手动)
- 不良品处理流程及相关管理规定
- 11质点运动的描述
- PI外贸PI模板
评论
0/150
提交评论