13 简解一类“恒成立”高考题.doc_第1页
13 简解一类“恒成立”高考题.doc_第2页
13 简解一类“恒成立”高考题.doc_第3页
13 简解一类“恒成立”高考题.doc_第4页
13 简解一类“恒成立”高考题.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

简解一类“恒成立”高考题定理 (1)若函数在处可导,且时恒成立,则;(2) 若函数在处可导,且时恒成立,则初步感知 若,所以函数在处右侧附近的图像是减函数又函数在处可导,所以同理,可得其他结论也成立严格证明若,由函数在处可导及导数的定义,得同理,可证得其他结论也成立题1(1)(2006年高考全国卷II理科第20题)设函数若对所有的,都有成立,求实数的取值范围(2)(2014年高考陕西卷理科第21(2)题)设函数,其中是的导函数.若恒成立,求实数的取值范围解 (1)设,得由定理(1)得,即由导数易证,所以所求实数的取值范围是(2)可得题设即“恒成立”由(1)知,所求答案也为题2(2007年高考全国卷I理科第20(2)题)设函数,若对所有的,都有,求实数的取值范围解 同上可求得答案为题3(2008年高考全国卷II理科第22(2)题)设函数,若对所有的,都有,求实数的取值范围解 设,得由定理(1)得,即下证当时,只需证: 当且时,欲证成立当且时,得还须证明时,欲证成立即证设,因为用导数易证,所以所以是增函数,得,即欲证成立所以所求实数的取值范围是题4(2010年高考新课标全国卷文科第21(2)题)设函数,若当时,都有,求的取值范围解 题设即,也即,还即用以上方法可求得答案为题5(2009年高考陕西卷理科第20(3)题)已知函数,其中.若的最小值为1,求的取值范围解 设,得题设即.由定理(1)得,即当且时,还可证,即证设,得设,得,所以是增函数,得,即是增函数,所以,得欲证成立所以当时,得所求的取值范围是题6(2013年高考辽宁卷文科第21题)(1)证明:当时,;(2)若不等式对恒成立,求实数的取值范围解(1)略(2)设,得,所以由定理3(1)可得即当且时,还可得:得所求实数的取值范围是题7(2013年高考辽宁卷理科第21题)已知函数当时:(1)求证:;(2)若求实数的取值范围解(1)欲证的左边等价于.设,得得,所以当时,恒成立,所以是增函数,得,所以是增函数,得,即欲证成立可得欲证的右边等价于,这用导数极易证得(2)设,得题设即由定理(1)可得即当且时,还可得:设,得用导数可证得在0,1上是减函数,所以,即在0,1上是减函数,所以,进而可得:当时,恒成立得所求实数的取值范围是 题8(2014年高考北京卷理科第18题)已知函数(1)求证:;(2)若对恒成立,求的最大值与的最小值解 (1)略(2)设,得(由(1)得),所以是减函数,得是减函数,所以所求的最大值是设,由题设得恒成立,即用导数易证,即所以所求的最小值是1练习1.若恒成立,求实数的取值范围2.设R).(1)讨论函数的单调性;(2)若当时,恒成立,求实数a的取值范围.答案:1.2.(1)得.当时,可得恒成立,所以函数在上是增函数.当时,可得函数在上是增函数,在上是减函数.(2)可得题设即恒成立.令,得题设即恒成立.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论