



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基础过关第2课时 等差数列1等差数列的定义:d(d为常数)2等差数列的通项公式: ana1d anamd3等差数列的前n项和公式:Sn4等差中项:如果a、b、c成等差数列,则b叫做a与c的等差中项,即b5数列an是等差数列的两个充要条件是:数列an的通项公式可写成anpnq(p, qR)数列an的前n项和公式可写成Snan2bn (a, bR)6等差数列an的两个重要性质: m, n, p, qN*,若mnpq,则数列an的前n项和为Sn,S2nSn,S3nS2n成数列典型例题例1.在等差数列an中,(1)已知a1510,a4590,求a60;(2)已知S1284,S20460,求S28;(3)已知a610,S55,求a8和S8解:(1)方法一:a60a159d130方法二:,由anam(nm)da60a45(6045)d9015130(2)不妨设SnAn2Bn,Sn2n217nS28228217281092(3)S6S5a651015,又S615即a15而da8a62 d16S8变式训练1.在等差数列an中,a53,a62,则a4a5a10解:da6a55,a4a5a10例2. 已知数列an满足a12a,an2a(n2)其中a是不为0的常数,令bn求证:数列bn是等差数列求数列an的通项公式解: an2a (n2) bn (n2) bnbn1 (n2)数列bn是公差为的等差数列 b1故由得:bn(n1)即:得:ana(1)变式训练2.已知公比为3的等比数列与数列满足,且,(1)判断是何种数列,并给出证明;(2)若,求数列的前n项和解:1),即为等差数列。(2)。例3. 已知an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列前n项和。求Tn解:设an首项为a1公差为d,由 SnTn变式训练3两等差数列an、bn的前n项和的比,则的值是()A B C D解:B 解析:。例4. 美国某公司给员工加工资有两个方案:一是每年年末加1000美元;二是每半年结束时加300美元问:从第几年开始,第二种方案比第一种方案总共加的工资多?如果在该公司干10年,问选择第二种方案比选择第一种方案多加工资多少美元?如果第二种方案中每半年加300美元改为每半年加a美元问a取何值时,总是选择第二种方案比第一种方案多加工资?解:设工作年数为n(nN*),第一种方案总共加的工资为S1,第二种方案总共加的工资为S2则:S11000110002100031000n500(n1)nS23001300230033002n300(2n1)n由S2S1,即:300(2n1)n500(n1)n解得:n2从第3年开始,第二种方案比第一种方案总共加的工资多当n10时,由得:S1500101155000S2300102163000 S2S18000在该公司干10年,选第二种方案比选第一种方案多加工资8000美元若第二种方案中的300美元改成a美元则an(2n1) nN* a250250变式训练4.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?解:(1)设中低价房面积形成数列an,由题意可知an是等差数列,其中a1=250,d=50,则Sn=250n+=25n2+225n,令25n2+225n4750,即n2+9n-1900,而n是正整数, n10.到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.(2)设新建住房面积形成数列bn,由题意可知bn是等比数列,其中b1=400,q=1.08,则bn=400(1.08)n-10.85.由题意可知an0.85 bn,有250+(n-1)50400(1.08)n-10.85.由计箅器解得满足上述不等式的最小正整数n=6.到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.归纳小结1欲证an为等差数列,最常见的做法是证明:an1and(d是一个与n无关的常数)2a1,d是等差数列的最关键的基本量,通常是先求出a1,d,再求其他
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电商平台运营团队入职培训合同范本
- 二零二五年度光纤宽带接入与宽带提速服务合同
- 二零二五年度国际广告宣传代理合同
- 2025版建筑渣土运输与污水处理服务合同范本
- 二零二五版美容院员工培训与技术交流合同
- 二零二五版海外房地产项目劳务派遣劳动合同
- 2025版咖啡厅租赁合同书(含人力资源管理与培训)
- 2025电商产品研发与运营合作协议书0814
- 2025版房地产广告代理服务与技术支持合作协议
- 二零二五年度返聘研发人员知识产权保护合同
- 2025年大学辅导员考试题库真题及答案
- 腮红画法教学课件
- 二零二五版便利店员工劳动合同模板
- 弱电设备运输方案模板(3篇)
- 2025-2030中国重水市场运行态势与未来竞争力剖析报告
- 企业职工感恩教育
- GB 17051-2025二次供水设施卫生规范
- 品牌管理部组织架构及岗位职责
- 临沧市市级机关遴选真题2024
- 【物化生 高考西北卷】2025年高考招生考试真题物理+化学+生物试卷(适用陕西、山西、青海、宁夏四省)
- 2025-2030中国工控机(IPC)行业应用态势与前景动态预测报告
评论
0/150
提交评论