消费者购房行为特征的实证研究.doc_第1页
消费者购房行为特征的实证研究.doc_第2页
消费者购房行为特征的实证研究.doc_第3页
消费者购房行为特征的实证研究.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

消费者购房行为特征的实证研究摘要: 在住宅市场消费者行为研究方面,国外研究成果丰富,而国内尚处于起步阶段。与主成分分析等方法相比,对应分析与最优尺度分析方法具有其独特的优势。本文以广州市海珠区赤岗为例,采用对应分析与最优尺度分析方法对消费者购房行为特征进行了实证研究。综合运用主成分分析、对应分析、最优尺度分析方法,会使消费者行为研究更有深度。 关键词:住宅市场;消费者行为;对应分析;最优尺度分析 Abstract: There are plenty of literatures about the consumers behavior research in the residential market abroad, while the research is at the beginning stage in China. Compared with factor analysis, correspondence analysis and optimal scaling technique have unique advantages. The characteristics of consumers behavior of buying houses in Chigang distric,t Guangzhou, have been analyzed with the both methods./xiaofeixinli/2010/1021/The research of Consumers behaviorwill be deepened if correspondence analysis, optimal scaling technique and factor analysis are adopted together. Key words: residential market; consumers behavior; correspondence analysis; optimal scaling technique 一、引言 关于住宅市场中消费者行为的研究,国外学者有诸多研究成果。1972年,Menchik研究了消费者购房的偏好因素,他将购房偏好分为住房与地块特征、住房的可达性、自然环境、人造和非自然环境四个方面,并且重点研究了消费者的环境偏好1。1973年, Straszheim采用入户调查的方法,研究了居民对城市住房的需求特征2。1974年,Onibokun评价了消费者购房满意度,并且对消费者购房知觉分为居住、环境、管理及公房项目限制4个子系统3。1977年, Bible对影响消费者购房偏好的因素进行了新的划分,他将消费者购房偏好分为住房与地块特征、访友购物上班的接近性、公园绿地居住人群的身份与地位、房地产税等4个方面,并采用因素成对比较法(Paired comparisontechnique)确定了上述4个因素的权重4。1978年,Weicher运用统计分析的方法,对美国家庭的支付能力与购房行为进行了相关分析5。 Hempel和Jain对不同文化背景下的消费行为进行了经验总结,其中关于消费者购房搜寻过程采用多元回归分析方法建立了预测模型6。1982年, Galster研究了美国黑人与白人购房地点方面的自行隔离(Self-segregate)现象,并以多元回归分析的方法建立了房价与居住状况因子、邻里状况因子的函数模型7。1985年, Bajic采用经验分析的方法,研究了住宅市场中市场细分问题及消费者购房特征8。1988年,Nelson和Rabianski采用多维尺度分析、聚类分析方法对住房市场中的消费者偏好进行了研究。他们认为,影响消费者购房的因素主要有房地产的自然环境与邻里质量、建筑设计、可居住性和对外联系。同时采用实证分析的方法得出结论,即对于不同细分市场,影响消费者购房的偏好因素是相同的;但消费者在不同细分市场对购房偏好因素所持的权重不同9。1997年,An-glin研究了住宅市场中影响消费者购房的决定性因素10。2002年,Haurin和Parcel研究了消费者是否拥有私人住宅的状况对其孩子身心成长的影响11。2003年,Harding, Knight和Sirmang研究了消费者购房过程中的讨价还价能力与位势、住房空置等影响因素的关系12。 由于国内住宅市场消费者行为研究开始于20世纪90年代中期,有关研究还非常少,绝大多数论文研究内容是关于房地产市场需求状况及特征的一般分析,研究方法多限于描述总结以及频数分析和交叉列联分析,仅有个别论文13采用主成分分析与多元回归分析。许多作者缺乏对国外同类研究成果的了解,这一点可以从论文参考文献及研究内容上判定。 目前在国内外房地产学界,作者尚未发现采用对应分析与最优尺度分析方法开展住宅市场消费者行为研究的学术论文。本文的研究目的有二:一是探索对应分析与最优尺度分析在住宅市场消费者行为研究过程中的运用方式与方法;二是尝试采用以上方法对市场细分后的消费者群体特征进行准确描述与刻画。 二、对应分析与最优尺度分析 对应分析(Correspondence analysis)与最优尺度分析(Optimal scaling)由荷兰Leiden大学DTSS课题组研制并于SPSS11. 0之后新增的两个应用程序14。它们通过主成分分析来描述两个或多个分类变量各水平间的相关性,用多维图示方法反映变量之间的相互关系。对应分析计算与运行的基本过程与方法是: (1)选择变量,根据有关标准进行分类。(2)输出对应分析表。对应分析表实际是两个变量的行列表,表中的数字显示两个变量各种类别的大致对应关系。如果行列中有关数据普遍存在过多或过少,说明变量分类有可能存在问题,需要重新进行分类。(3)测度分类变量的距离。有卡方与欧式距离两种。卡方距离适用于离散型变量,欧式距离适用于连续型变量。(4)计算有关统计指标。包括维数、奇异值、惯量、总的卡方检验及P值,其中奇异值即惯量的平方根,相当于相关分析中的相关系数;惯量用于说明对应分析各个维度的结果能够解释列联表中两变量联系的程度。(5)输出并分析对应分析图。研究对应分析图主要应注意两点:第一,观察变量分别在第一维(横轴)和第二维(纵轴)方向上的区别情况,如果同一变量不同类别在某个方向上距离较远,说明这些类别在该维度上区别较大;否则说明这些类别在该维度上区别不大。我们的观察应以区别较大的维度为主;第二,比较不同变量各个取值分类间的位置关系,落在从图形中心(0, 0)点出发相同方向上大致相同区域内的不同变量的分类点彼此有联系。 与对应分析比较,最优尺度分析的主要区别是可应用于三个及其以上的变量之间的关系分析,其分析过程与对应分析类似。由于最优尺度分析方法不像多元回归方法那样可以自动筛选变量,因此变量较多时可能会掩盖真实联系,同时使得图形一片混乱,难以看清。所以,在实际运用中可以将最优尺度分析与对应分析结合使用,从中筛选出有价值的市场信息。 和交叉列联分析相比,对应分析与最优尺度分析继承了主成分分析的数据化简与变量降维的优点;和主成分分析相比,对应分析与最优尺度分析具有以下显著优点:一是由于其采用多维图示显示分析结果,因此克服了主成分分析结果艰涩难懂的弊端;二是主成分分析对分析数据的要求较高,要求输入的必须是量表型(Scale)的数据。而对应分析与最优尺度分析适用的数据则宽泛得多,任何两个能够采用频次进行交叉分析的变量,都可以使用对应分析与最优尺度分析的方法;三是主成分分析只能把变量在象限图中表示出来,而对应分析与最优尺度分析则可以把变量及其属性同时在一个坐标系中标定出来。当然,对应分析与最优尺度分析也有其局限性:一是由于主成 分分析的输入数据是量表型的数据,因此,其结果可以用来进行假设检验(Hypothesis test),而对应分析与最优尺度分析的结果则无法进行假设检验;二是主成分分析的坐标轴是可以通过分析因子载荷来进行命名的,而对应分析与最优尺度分析的坐标轴却很难进行命名;三是主成分分析可以针对单个样本或者小群体绘制出单个变量或者多个变量的知觉图,而对应分析与最优尺度分析则必须依靠较多样本才能绘制出知觉图。 三、数据来源与处理 在文献研究的基础上15,我们与房地产企业营销策划人员、售楼人员进行了一系列个别访谈,由此设计了调查问卷初稿。在认真听取了多名专业教师的意见并在部分潜在购房者中试填之后,我们对问卷初稿进行了修改最终形成正式问卷。正式问卷主要采用多项选择题,有关内容包括:被访问者年龄、性别、学历、月收入(以下简称收入)、所能接受的毛坯房总价(以下简称总价)、单价、建筑面积(以下简称面积)、户型、装修标准(以下简称装修)等19项内容。 2004年3月,我们采用方便样本,在广州市海珠区赤岗一带对附近在售住宅的参观者、商场购物中心的购物者、公交站点前的等车人以及过路行人进行问卷调查。本次调查共发放问卷800份,回收问卷614份数,回收率77%;去除20岁以下、65岁以上缺乏购房能力的人群,并剔除异常调查问卷、缺漏项问卷,共取得有效问卷458份,问卷有效率为75%。在有效应答者中,男女分别占60%和40%;年龄构成上, 25岁以下者占20. 6%, 25-34岁占56. 3%, 35-44岁占15. 3%, 45岁以上占7.8%;学历构成上,大专以下占32.8%,大专学历占36.2%,大专以上学历占31%;收入构成上, 1000-1999元占20%, 2000-2999元占28. 7%, 3000-3999元占21. 5%, 4000-4999元占14. 8%, 5000-5999元占8.1%,6000元以上占6.9%。 对于上述调查问卷中的19项内容,从研究时间、成本以及研究目的的综合角度出发,我们从中遴选出年龄、学历、收入、总价、面积、户型、装修7项问题作为主要分析变量,其它10项问题仅作为辅助分析之用。上述7个变量的类别划分见表1。在7个主要变量中,我们以住宅总价作为市场细分变量,年龄、学历、收入作为消费者身份与背景特征,面积、户型、装修作为消费者所购住房特征,消费者身份与背景特征、所购住房特征均与住宅总价进行对应分析与最优尺度分析,从中探寻广州市海珠区赤岗一带消费者购房行为特征。 四、计算与分析 (一)对应分析 对应分析的过程以被访者所能接受的总价与收入关系分析为例,运行SPSS11. 0中对应分析程序,输出结果见图1。 观察图1,我们不难发现: (1)倾向于购买总价为50万元以上住房的人群,月收入一般为6000元以上;倾向于购买总价为30-39万元、40-49万元住房的人群,月收入一般是3000-3999元;倾向于购买总价为20万元以下住房的人群,月收入一般是1000-1999元;倾向于购买总价为20-29万元住房的人群,月收入一般是2000-2999元;月收入4000-4999元、5000-5999元的人群似乎和各类房屋总价没有联系。 (二)最优尺度分析 运行最优尺度分析软件,输出结果见图2。 由图2我们可以得出以下线索:总价为50万元以上的住房与月收入在6000元以上、45岁以上的人群有联系;总价为40-49万元的住房与月收入3, 000-3, 999元的人群有密切联系;大学以上学历和月收入4, 000-4, 999元联系密切;年龄为25-34岁、35-44岁和总价30-39万元的住房有关系;文化程度为高中以下以及大专学历的、年龄小于25岁、住房总价低于20万元以及20-29万元、收入为2000-2999元有联系,收入为1000-1999元的人群和有关变量没有关系。 由于最优尺度分析方法不像多元回归方法那样可以自动筛选变量,因此变量较多时可能会掩盖真实联系,同时使得图形一片混乱,难以看清。所以,在实际运用中我们可以 将最优尺度分析与对应分析结合使用,从中筛选出有价值的市场信息。 通过总价与年龄、收入、学历、建筑面积、户型、装修标准6组变量的对应分析,以及总价与年龄、收入、学历,总价与建筑面积、户型、装修两组最优尺度分析,我们整理出表2对应分析特征根汇总表以及广州市海珠区赤岗一带消费者购房行为特征。 从表2可以看出,虽然年龄、文化、收入、总价、面积、户型、装修7个变量分类在3-6类之间,但2维图中第一维的特征根百分比最低为62. 1%(总价与收入),第二维的特征根最高为29. 7% (总价与户型),第一维与第二维累计特征根百分比至少为89. 5% (总价与收入),因此6组变量对应分析的二维图形可以完全表示两个变量间的信息,并且观察时以第一维为主。 广州市海珠区赤岗一带消费者购房具有以下行为特征: (1)倾向于购买50万元以上毛坯房人群:年龄在45岁及其以上,大专以上文化程度,月收入6, 000元及其以上,喜欢建筑面积110平方米以上的住房,非常倾向于购买四房两厅两卫的户型以及复式单位。他们要求开发商提供精装修或装修套餐服务; (2)倾向于购买40-49万元毛坯房人群:年龄一般为35-44岁之间,月收入3000-3999元特征与之关系显著, 4000-4999元、5000-5999元特征与之有些关系,户型一般为三房两厅一卫或三房两厅两卫; (3)倾向于购买30-39万元毛坯房人群:年龄分布在小于25岁、25-34岁两个年龄段上,大专文化程度、月收入一般为3000-3999元,非常倾向于三方两厅一卫户型,一般要求开发商提供毛坯房; (4)倾向于购买20-29万元毛坯房人群:年龄也分布在小于25岁、25-34岁两个年龄区段,与大专文化程度关系非常显著,与月收入1000-1999元、2000-2999元关系显著。倾向于两房一厅和两房两厅,要求开发商提供普通装修; (5)倾向于购买20万元及其以下毛坯房人群:年龄25-34岁特征与之关系显著,小于25岁特征与之关系比较显著,文化程度大专以下,月收入一般1000-1999元,月收入2000-2999元特征与之有次相关关系。他们一般要求建筑面积69平方米以下住房,装修标准为毛坯房。(6)对于开发商只提供厨房、卫生间装修,即客厅、卧房不装修的做法没有任何人喜欢。 以上结论是从广州市海珠区赤岗一带调查问卷中获取的有价值的结论。在结果分析过程中,笔者也发现一些明显违背逻辑关系、自相矛盾的所谓结论。例如总价与面积的对应分析中, 20-29万元与100-109平方米有明显关系。但根据广州市房地产市场现状,每平方米2000-2900元的房价基本上不存在,因此这种关系不成立。因此要想用好对应分析与最优尺度分析,要求研究人员具有丰富的专业知识和必要的市场经验。至于上述问题的产生原因,我们认为应该是由问卷调查过程中被访人某些问题的填写错误造成。 五、结论 国外学者对住宅市场中消费者行为研究方面的视角广泛,研究方法丰富多样,但未发现采用对应分析和最优尺度分析开展住宅市场消费者行为研究。国内有关研究尚处于起步阶段。国内学者在房地产营销管理研究方面应借鉴国外的相关经验。 作为多维图示分析,对应分析和最优尺度分析具有形象直观的优点;同时在分析过程中计算了奇异值与特征根,对总信息量的解释程度进行了量化测度,提高了结果的科学性;在分析过程中可以使用类别或字符变量,扩大了数据分析的应用领域与范围;在购房者行为研究中,它们可以回答以下问题: (1)谁是我们的目标客户群? (2)各客户群的主要特征是什么? (3)还有什么客户群尚未得到有效市场开发或覆盖?由此角度出发,对应分析和最优尺度分析具有一定的数据挖掘功能,适用于探索性的分析。 由于对应分析和最优尺度分析既可使用量表式变量,又可使用类别或字符变量,因此我们完全可以运用量表式变量进行更具深度的分析,即:运用李克特量表形式设计购房者行为调查问卷,然后采用主成分分析进行变量降维与数据化简,根据主成分分析结果对消费者人群进行市场细分,在此基础上采用对应分析和最优尺度分析对消费者群体进行特征描述与刻画。如果按此技术路线进行市场研究,消费者行为研究方法将更加完善。 参考文献: 1M.Menchik. Empirically Validating Preference MeasuresJ.Environment and Planning, 1972, (4): 445-458. 2Mahlon R. Straszheim. Estimation of the Demand forUr-banHousing Services from Household Interview DataJ. The Review ofEconomics and Statistics, 1973: 1-8. 3Adepoju G. Onibokun. Evaluating Consumers Satisfaction withHousing: An Application of a SystemsApproachJ.AIP Journal, 1974, (40): 189-200. 4Douglas S. Bible. Intra UrbanMigration with SpecialEmphasis onHousing and Neighborhood AttributesD.The Ohio StateUniversity, 1977. 5John C. Weicher,New Home Affordability, Equity, and HousingMarket Behavior J, Journal of the American Real Estate and Urban Economics Association, 1978 , (4): 395-416. 6Donald J. Hempe,l Subhash C. Jain.House BuyingBehavior: An Empirical Study in Cross-Cultural Buyer Behavior J. Journal of theAmerican RealEstate andUrban EconomicsAssociation, 1978, (1): 1-21. 7George C. Galster.Black andWhite Preferences forNeighborhood RacialCompositionJ. Journal of theAmerican Real Estate andUrban EconomicsAssociation, 1982, (1): 39-66. 8Vladimir Bajic. Housing-Market Segmentation and Demand forHousing Attri

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论