已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英 文 翻 译系 别专 业班 级学生姓名学 号指导教师报告日期data curve fitting based on matlab curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points,possibly subject to constraints. curve fitting can involve eitherinterpolation, where an exact fit to the data is required, or smoothing, in which a smooth function is constructed that approximately fits the data. a related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors. fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables.extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to adegree of uncertaintysince it may reflect the method used to construct the curve as much as it reflects the observed data. research and application of a new method of curve fitting.the technique of curve fitting is used proverbially for the image processing, reverse engineering, test data processing, etc. it is inequitable to process physical parameters by some usual methods of curve fitting. those methods are performed only by minimizing the fitting error of one physical parameter, but do not take other parameters into account. the new method of curve fitting processes each physical parameter equally the simulation also proves that this new curve fitting method is right and effective. in the experiment of sound velocity, the voltammetry to measure the resistance experiment and the volt-ampere characteristic of diode experiment data processing as an example, introduced the experiment data processing based on matlab.with the traditional experimental data processing methods, experimental data is processed by using matlab can effectively avoid the error caused by manual processing, but also can reduce the computational workload, obtain accurate curve fitting, thereby increasing the accuracy of data processing and fast,rom graphic display results also can be more intuitive to judge the validity of the experiment.mathematical expression given set of discrete data(xk,yk) (k=1,2,m),(1) where xk is the independent variable x (scalar or vector, i.e., a mono-or polyhydric variable) values; yk of (scalar) corresponding to the value of the dependent variable y. curve fitting is to seek to solve the problem of (1) to adapt the laws of the analytical expression of the backgroundy=f(x,b),(2) making best approximation in some sense or fit (1), (x, b) is called fitting model;? parameters to be determined, when b) only appears when the linear, called a linear model? otherwise non-linear.amount(k=1,2,,m) in xk place called residual or remaining fit,the standard measure of goodness of fit is usually 或 where k 0 as weight coefficient or weight(unless otherwise specified, generally taken to be the average weight,wk(k=1,2,m),at this time without mention weight).when the parameter b) make t (b) or q (b) to achieve the most hours,appropriate (2) are referred to (1) the weighted chebyshev fitting meaning or weighted least squares sense,latter is more simple and most commonly used in the calculation. general linear model to determine the model parameters are parameters b) generalized polynomial coefficients,thatf(x,b)=b0g0(x)+b1g1(x)+bngn(x) (3) wherein g0, g1, ., gn called basis functions.gj on various different choices may constitute a variety of typical and commonly used linear model.from the point of view of function approximation, equation (3) can be approximated reflect the nature of many of nonlinear models.in the least squares sense (3) fitting a linear model with a discrete set of points (1),parameter b can be obtained by solving equations=0(i=0,n)to determine,that solution on b0,b1,bn of linear algebraic equations(i=0,1,,n),(4) formula (i,j0,1,,n), equations (4) commonly referred to as the normal equation or the normal equation, when m n, generally have a unique solution.as for the case of non-linear model and the principle of least squares, the parameter b) can be determined (see numerical solution of nonlinear equations, optimization) nonlinear equations or calculations about the method optimization.select the model for a given discrete data (1), the need to properly select the general model (2) of the function f (x, b) the type and specific form, which is the basis of fitting results.if known, (1) the actual background of the law, that is the dependent variable y dependence of the empirical formula of the independent variable x has an expression determined directly take appropriate empirical formula is fitting model.on the contrary, through the model (3) of the basis functions g0, g1, ., gn (number and types) of different choices, each corresponding proposed merger by choosing the good effect.function g0, g1, ., gn adaptation plays a role the model for testing, it is also known test function.another way is: the number and types into a sufficient number of test functions in the model (3), by means of statistical methods in mathematical correlation analysis and test of significance of the test function contains screened individually or sequentially with establish more appropriate model (see regression analysis).certainly, the above method may fit residuals (as a new discrete data) is performed again to compensate for the lack of the first fitting.in conclusion, when the intrinsic link between the variables in the data is not clear, as the choice to adapt the model to fit generally requires repeated testing and analysis to identify.procedure(1) draw a scatter plot, select the appropriate type of curve.generally based on the nature of the information can be combined with the expertise to determine the type of curve data, not really taht can be plotted on graph paper squares scatter plot, according to the distribution of scattered points, choose close, the appropriate curve type.can be plotted on graph paper squares scatter plot, according to the distribution of scattered points, choose close, the appropriate curve type.(2) be variable transformationy=f(y),x=g(x)(12.37)the two variables transformed linear relationship.(3) solving linear equations and variance analysis by the least squares method(4) convert the linear equations on the original variables x, y of the function expression基于matlab的数据曲线拟合分析 曲线拟合是构建的过程曲线,或数学函数,具有最适合于一系列的数据点,可能受到约束。曲线拟合可涉及无论是插值,其中一个确切的适合的数据是必需的,或平滑,其中一个“平滑”功能构造,大约拟合数据。一个相关的话题是回归分析,它更侧重于问题的统计推断如多少不确定性存在于一条曲线,它是适合与随机误差观测数据。拟合曲线可以作为一种辅助手段进行数据可视化,推断功能在没有数据的情况下,值,并总结两个或多个变量之间的关系。外推法是指使用拟合曲线的超出范围的观测数据,并受程度的不确定性,因为它可能反映了用于构造曲线一样,因为它反映了观测数据的方法。曲线拟合技术在图像处理、逆向工程以及测试数据的处理等领域中的应用越来越广泛。目前常见的一些曲线拟合方法中, 对各个物理量的处理有失公平性原则,通常是在处理中确保某一个物理量的拟合误差达到“最小”, 而没有考虑到其它物理量的拟合误差。本文从这一思路出发, 给出了一种新的曲线拟合方法, 采用这种曲线拟合方法, 对每个物理量的重视程度是相同的。实际的曲线拟合结果表明本文所提出的曲线拟合方法是正确和有效的。以声速测定实验、伏安法测电阻实验和二极管伏安特性实验的数据处理为例,介绍了 matlab 在实验数据处理中的应用。与传统的实验数据处理方法相比,用 matlab 处理实验数据能有效地避免手工处理所带来的误差,而且可减少计算工作量,得到准确的拟合曲线,从而增加数据处理的准确性及快捷性,从图形显示结果还可以更加直观地判断实验的正确性。数学表述 设给定离散数据(xk,yk) (k=1,2,m),(1)式中xk为自变量x(标量或向量,即一元或多元变量)的取值;yk为因变量 y(标量)的相应值。曲线拟合要解决的问题是寻求与(1)的背景规律相适应解析表达式y=f(x,b),(2)使它在某种意义下最佳地逼近或拟合(1),?(x,b)称为拟合模型;为待定参数,当b)仅在?中线性地出现时,称模型为线性的,否则为非线性的。量(k=1,2,,m)称为在xk处拟合的残差或剩余,衡量拟合优度的标准通常有 或 式中k0为权系数或权重(如无特别指定,一般取为平均权重,即wk(k=1,2,m),此时无需提到权)。当参数b)使t(b)或q(b)达到最小时,相应的(2)分别称为在加权切比雪夫意义或加权最小二乘意义下对 (1)的拟合,后者在计算上较简便且最为常用。模型中参数的确定 一般的线性模型是以参数 b)为系数的广义多项式,即f(x,b)=b0g0(x)+b1g1(x)+bngn(x) (3)式中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全国大件运输超限超载治理考核试卷
- 2025年农村振兴行业农村电商模式创新研究报告及未来发展趋势预测
- 2025年工业互联网技术在工厂生产中的应用研究报告及未来发展趋势预测
- 2025年航海业行业船舶技术与航线规划研究报告及未来发展趋势预测
- 2025年海运集装箱共享模式与供应链优化物流供应链管理考核试卷
- 2025辽宁沈阳市城市建设投资集团有限公司所属企业市政工程设计研究院有限公司招聘7人考试笔试备考试题及答案解析
- 成都市新都区石室悦动新城中学招聘(40人)笔试考试参考试题及答案解析
- 2026湖南省长沙市芙蓉区招聘公费师范生30人考试笔试备考试题及答案解析
- 2025年湖南长沙市公安局望城分局招聘13名巡防队员考试笔试备考题库及答案解析
- 2025甘肃嘉峪关市供销合作社招聘公益性岗位人员1人笔试考试备考试题及答案解析
- 三级医院评审标准实施细则(2023 年版)
- 股东退股注销协议书
- 《继电器原理及其应用》课件
- 汽车维修工(汽车车身涂装修复工)理论知识考核要素细目表
- 江苏南京事业单位考试《行测》模拟题带答案2024年
- 幕墙工程量计算规则
- 2024-2025苏教版(2017)小学科学四年级上册期末考试测试卷及参考答案(共3套)
- 2024年广东高考物理试题分析和复习策略
- 中职学校学生量化考核规定
- 环境保护工作者个人自传范文
- 消毒供应专科护士培训与学习汇报
评论
0/150
提交评论